bafilomycin-a and ethylisopropylamiloride

bafilomycin-a has been researched along with ethylisopropylamiloride* in 5 studies

Other Studies

5 other study(ies) available for bafilomycin-a and ethylisopropylamiloride

ArticleYear
An in vitro investigation of gastrointestinal Na(+) uptake mechanisms in freshwater rainbow trout.
    Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2014, Volume: 184, Issue:8

    In vitro gut-sac preparations of all four sections (stomach, anterior, mid, and posterior intestine) of the gastrointestinal tract (GIT) of freshwater rainbow trout, together with radiotracer ((22)Na) techniques, were used to study unidirectional Na(+) uptake rates (UR, mucosal → blood space) and net absorptive fluid transport rates (FTR) under isosmotic conditions (mucosal = serosal osmolality). On an area-specific basis, unidirectional Na(+) UR was highest in the mid-intestine, but when total gut area was taken into account, the three intestinal sections contributed equally, with very low rates in the stomach. The theoretical capacity for Na(+) uptake across the whole GIT is sufficient to supply all of the animal's nutritive requirements for Na(+). Transport occurs by low affinity systems with apparent K m values 2-3 orders of magnitude higher than those in the gills, in accord with comparably higher Na(+) concentrations in chyme versus fresh water. Fluid transport appeared to be Na(+)-dependent, such that treatments which altered unidirectional Na(+) UR generally altered FTR in a comparable fashion. Pharmacological trials (amiloride, EIPA, phenamil, bafilomycin, furosemide, hydrochlorothiazide) conducted at a mucosal Na(+) concentration of 50 mmol L(-1) indicated that GIT Na(+) uptake occurs by a variety of apical mechanisms (NHE, Na(+) channel/H(+) ATPase, NCC, NKCC) with relative contributions varying among sections. However, at a mucosal Na(+) concentration of 10 mmol L(-1), EIPA, phenamil, bafilomycin, and hydrochlorothiazide were no longer effective in inhibiting unidirectional Na(+) UR or FTR, suggesting the contribution of unidentified mechanisms under low Na(+) conditions. A preliminary model is presented.

    Topics: Amiloride; Animals; Biological Transport; Fresh Water; Furosemide; Gastrointestinal Tract; Hydrochlorothiazide; In Vitro Techniques; Kinetics; Macrolides; Models, Biological; Oncorhynchus mykiss; Osmolar Concentration; Osmoregulation; Regression Analysis; Sodium Radioisotopes

2014
Comparative characterization of Na+ transport in Cyprinodon variegatus variegatus and Cyprinodon variegatus hubbsi: a model species complex for studying teleost invasion of freshwater.
    The Journal of experimental biology, 2012, Apr-01, Volume: 215, Issue:Pt 7

    The euryhaline fish Cyprinodon variegatus variegatus is capable of tolerating ambient salinities ranging from 0.3 to 160 PSU, but is incapable of long-term survival in freshwater (<2 mmol l(-1) Na(+)). A population isolated in several freshwater (0.4-1 mmol l(-1) Na(+)) lakes in central Florida is now designated as a subspecies (Cyprinodon variegatus hubbsi). We conducted a comparative study of Na(+) transport kinetics in these two populations when acclimated to different ambient Na(+) concentrations. Results reveal that the two subspecies have qualitatively similar low affinity Na(+) uptake kinetics (K(m)=7000-38,000 μmol l(-1)) when acclimated to 2 or 7 mmol l(-1) Na(+), but C. v. hubbsi switches to a high affinity system (K(m)=100-140 μmol l(-1)) in low-Na(+) freshwater (≤1 mmol l(-1) Na(+)). Inhibitor experiments indicate that Na(+) uptake in both subspecies is EIPA-sensitive, but sensitivity decreases with increasing external Na(+). EIPA induced a 95% inhibition of Na(+) influx in C. v. hubbsi acclimated to 0.1 mmol l(-1) Na(+), suggesting that this subspecies is utilizing a Na(+)/H(+) exchanger to take up Na(+) in low-Na(+) environments despite theoretical thermodynamic constraints. Na(+) uptake in C. v. hubbsi acclimated to 0.1 mmol l(-1) Na(+) is phenamil-sensitive but not bafilomycin-sensitive, leading to uncertainty about whether this subspecies also utilizes Na(+) channels for Na(+) uptake. Experiments with both subspecies acclimated to 7 mmol l(-1) Na(+) also indicate that a Cl(-)-dependent Na(+) uptake pathway is present. This pathway is not metolazone-sensitive (NCC inhibitor) in either species but is bumetanide-sensitive in C. v. variegatus but not C. v. hubbsi. This suggests that an apical NKCC is increasingly involved with Na(+) uptake for this subspecies as external Na(+) increases. Finally, characterization of mitochondria-rich cell (MRC) size and density in fish acclimated to different ambient Na(+) concentrations revealed significant increases in the number and size of emergent MRCs with decreasing ambient Na(+). A linear relationship between the fractional area of emergent MRCs and Na(+) uptake rate was observed for both subspecies. However, C. v. variegatus have lower Na(+) uptake rates at a given MRC fractional area compared with C. v. hubbsi, indicating that the enhanced Na(+) uptake by C. v. hubbsi at low ambient Na(+) concentrations is not strictly a result of increased MRC fractional area, and other variables, such as different

    Topics: Acclimatization; Amiloride; Animals; Cell Size; Chlorides; Epithelium; Fresh Water; Gills; Introduced Species; Ion Transport; Killifishes; Kinetics; Macrolides; Metolazone; Mitochondria; Models, Animal; Sodium; Species Specificity; Time Factors

2012
Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae.
    American journal of physiology. Cell physiology, 2010, Volume: 298, Issue:2

    In this study, a scanning ion-selective electrode technique (SIET) was applied to measure H(+), Na(+), and NH(4)(+) gradients and apparent fluxes at specific cells on the skin of medaka larvae. Na(+) uptake and NH(3)/NH(4)(+) excretion were detected at most mitochondrion-rich cells (MRCs). H(+) probing at MRCs revealed two group of MRCs, i.e., acid-secreting and base-secreting MRCs. Treatment with EIPA (100 muM) blocked 35% of the NH(3)/NH(4)(+) secretion and 54% of the Na(+) uptake, suggesting that the Na(+)/H(+) exchanger (NHE) is involved in Na(+) and NH(3)/NH(4)(+) transport. Low-Na(+) water (<0.001 mM) or high-NH(4)(+) (5 mM) acclimation simultaneously increased Na(+) uptake and NH(3)/NH(4)(+) excretion but decreased or even reversed the H(+) gradient at the skin and MRCs. The correlation between NH(4)(+) production and H(+) consumption at the skin surface suggests that MRCs excrete nonionic NH(3) (base) by an acid-trapping mechanism. Raising the external NH(4)(+) significantly blocked NH(3)/NH(4)(+) excretion and Na(+) uptake. In contrast, raising the acidity of the water (pH 7 to pH 6) enhanced NH(3)/NH(4)(+) excretion and Na(+) uptake by MRCs. In situ hybridization and real-time PCR showed that the mRNAs of the Na(+)/H(+) exchanger (slc9a3) and Rhesus glycoproteins (Rhcg1 and Rhbg) were colocalized in MRCs of medaka, and their expressions were induced by low-Na(+) acclimation. This study suggests a novel Na(+)/NH(4)(+) exchange pathway in apical membranes of MRCs, in which a coupled NHE and Rh glycoprotein is involved and the Rh glycoprotein may drive the NHE by generating H(+) gradients across apical membranes of MRCs.

    Topics: Amiloride; Ammonia; Animals; Biological Transport; Cation Transport Proteins; Dose-Response Relationship, Drug; Fish Proteins; Hydrogen-Ion Concentration; In Situ Hybridization; Ion-Selective Electrodes; Kinetics; Larva; Macrolides; Membrane Glycoproteins; Membrane Transport Modulators; Mitochondria; Oryzias; Quaternary Ammonium Compounds; Reverse Transcriptase Polymerase Chain Reaction; Rh-Hr Blood-Group System; RNA, Messenger; Sodium; Sodium-Hydrogen Exchanger 3; Sodium-Hydrogen Exchangers; Water-Electrolyte Balance; Yolk Sac

2010
Chronic high glucose inhibits albumin reabsorption by lysosomal alkalinization in cultured porcine proximal tubular epithelial cells (LLC-PK1).
    Diabetes research and clinical practice, 2006, Volume: 72, Issue:3

    Lysosomal acidification is a key step of albumin reabsorption in proximal tubular epithelial cells (PTECs). This study was performed to examine the influence of chronic high glucose on lysosomal acidification in cultured PTECs. Porcine PTECs (LLC-PK(1) cells) were cultured in 16.7 mM (300 mg/dl) glucose (HG) alone or with 0.5 mM phlorizin for 24 weeks and subsequently for 12 weeks in 5.5 mM (100 mg/dl) glucose (NG). Chronic HG inhibited the fluorescein isothiocyanate (FITC)-albumin (A) uptake progressively, while phlorizin reversed the inhibition. NG for 12 weeks after HG normalized the uptake. The time-dependent uptake of FITC-A was inhibited by HG and bafilomycin A(1) (BafA(1)) after 15 min and by 4,4'-diisothiocyanato-2,2'-disulfonic acid (DIDS) and N-ethyl-N-isopropyl-amiloride (EIPA) after 3 min. Cellular ATP was depleted by HG and restored by NG. Lysosomal pH, assessed by an acidotropic fluorescent probe, was alkalinized (pH 4.5-7.8) with 5.5-27.8 mM glucose and normalized by subsequent NG. BafA(1) alkalinized lysosomes, and the concentration required to 50% change for the pH and 50% inhibition of FITC-A uptake was similar. EIPA inhibited FITC-A uptake, but did not influence lysosomal pH. DIDS inhibited FITC-A uptake, and unexpectedly lowered lysosomal pH. Real time PCR showed that HG reduced the mRNA level for vacuolar H(+)-ATPase, but did not alter those of chloride channel-5 and Na(+)-H(+)-exchanger-3. In conclusion, the chronic HG inhibits albumin reabsorption by lysosomal alkalinization in PTECs, probably due to ATP depletion and down-regulation of vacuolar H(+)-ATPase.

    Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Albumins; Amiloride; Animals; Epithelial Cells; Fluorescein-5-isothiocyanate; Glucose; Hydrogen-Ion Concentration; Kidney Tubules, Proximal; LLC-PK1 Cells; Lysosomes; Macrolides; Sus scrofa

2006
Na/H exchange and H-K ATPase increase distal tubule acidification in chronic alkalosis.
    Kidney international, 1998, Volume: 53, Issue:4

    We examined whether H(+)-ATPase, H(+)-K(+)-ATPase, and or Na+/H+ exchange mediates increased distal tubule acidification in animals with chronic metabolic alkalosis using pharmacological inhibitors of these H+ transporters in in vivo-perfused tubules of anesthetized rats. Chronic metabolic alkalosis was induced with furosemide followed by minimum electrolyte diet and HCO3 drinking water. The reduction in net HCO3 reabsorption was greater in distal tubules of alkalotic compared to control animals perfused with Schering 28080 to inhibit H(+)-K(+)-ATPase (-6.4 +/- 0.9 vs. -1.4 +/- 0.5 pmol/mm.min-1, P < 0.02) and with EIPA to inhibit Na+/H+ exchange (-11.1 +/- 1.7 vs. -6.6 +/- 0.9 pmol/mm.min-1, P < 0.01) but was similar in distal tubules of alkalotic and control animals perfused with bafilomycin to inhibit H(+)-ATPase. The greater reduction of distal tubule net HCO3 reabsorption in alkalotic compared to control animals induced by EIPA was eliminated by systemic infusion of the endothelin receptor antagonist bosentan (-4.6 +/- 0.7 vs. -4.4 +/- 0.7 pmol/mm.min-1, P = NS) but the greater reduction induced by Schering 28080 persisted. Urine endothelin-1 (ET-1) excretion was higher in animals with maintained alkalosis (164.5 +/- 23.7 vs. 76.6 +/- 10.8 fmol/day, P < 0.03), but decreased following KCl repletion to a value (86.7 +/- 10.0 fmol/day, P < 0.02 vs. respective before-KCl value) that was not different from that for KCl-repleted control animals (79.9 +/- 8.7 fmol/day, P = NS vs. KCl-repleted alkalotic animals). The data support that augmented distal tubule acidification in alkalotic animals is due to increased H(+)-K(+)-ATPase and Na+/H+ exchange activity, the latter stimulated by endogenous endothelins.

    Topics: Acid-Base Equilibrium; Acids; Aldosterone; Alkalosis; Amiloride; Animals; Anti-Arrhythmia Agents; Anti-Bacterial Agents; Bicarbonates; Endothelins; Enzyme Inhibitors; Female; H(+)-K(+)-Exchanging ATPase; Imidazoles; Kidney Tubules, Distal; Macrolides; Male; Rats; Rats, Wistar; Sodium-Hydrogen Exchangers

1998