bacteriochlorophylls has been researched along with terbutryne* in 3 studies
3 other study(ies) available for bacteriochlorophylls and terbutryne
Article | Year |
---|---|
Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches. Topics: Amino Acid Substitution; Bacteriochlorophylls; Benzoquinones; Electron Transport; Energy Metabolism; Imidoesters; Kinetics; Light-Harvesting Protein Complexes; Mutagenesis, Site-Directed; Oxidation-Reduction; Pheophytins; Photosynthetic Reaction Center Complex Proteins; Plasmids; Rhodobacter capsulatus; Spectrophotometry; Structure-Activity Relationship; Titrimetry; Triazines | 2003 |
B-side charge separation in bacterial photosynthetic reaction centers: nanosecond time scale electron transfer from HB- to QB.
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC. Topics: Bacteriochlorophylls; Benzoquinones; Dimerization; Electron Transport; Histidine; Imidoesters; Kinetics; Light-Harvesting Protein Complexes; Mutation; Nanotechnology; Phenylalanine; Pheophytins; Photolysis; Photosynthetic Reaction Center Complex Proteins; Rhodobacter capsulatus; Static Electricity; Triazines; Tyrosine | 2003 |
Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-A resolution.
It has previously been shown that replacement of the residue His L168 with Phe (HL168F) in the Rhodopseudomonas viridis reaction center (RC) leads to an unprecedented drastic acceleration of the initial electron transfer rate. Here we describe the determination of the x-ray crystal structure at 2.00-A resolution of the HL168F RC. The electron density maps confirm that a hydrogen bond from the protein to the special pair is removed by this mutation. Compared with the wild-type RC, the acceptor of this hydrogen bond, the ring I acetyl group of the "special pair" bacteriochlorophyll, D(L), is rotated, and its acetyl oxygen is found 1.1 A closer to the bacteriochlorophyll-Mg(2+) of the other special pair bacteriochlorophyll, D(M). The rotation of this acetyl group and the increased interaction between the D(L) ring I acetyl oxygen and the D(M)-Mg(2+) provide the structural basis for the previously observed 80-mV decrease in the D(+)/D redox potential and the drastically increased rate of initial electron transfer to the accessory bacteriochlorophyll, B(A). The high quality of the electron density maps also allowed a reliable discussion of the mode of binding of the triazine herbicide terbutryn at the binding site of the secondary quinone, Q(B). Topics: Bacteriochlorophylls; Binding Sites; Crystallography, X-Ray; Electron Transport; Herbicides; Hydrogen Bonding; Light-Harvesting Protein Complexes; Magnesium; Models, Chemical; Models, Molecular; Mutation; Oxidation-Reduction; Oxygen; Photosynthetic Reaction Center Complex Proteins; Protein Binding; Rhodopseudomonas; Triazines | 2000 |