bacteriochlorophylls has been researched along with bacteriochlorin* in 14 studies
1 review(s) available for bacteriochlorophylls and bacteriochlorin
Article | Year |
---|---|
Bacteriochlorophyll a, and its derivatives: chemistry and perspectives for cancer therapy.
The review summarizes the chemistry of the third generation of photosensitizers, namely, the derivatives of natural bacteriochlorophyll a, for photodynamic treatment of cancer. The compounds of this class strongly absorb light at lambda=770-850 nm. This unique property opens new therapeutic opportunities due to deeper tissue penetration of light, thereby increasing the photodamage for tumor eradication. Analyzed are the modifications of bacteriochlorophyll a, that improve physico-chemical characteristics of compounds and enhance accumulation in tumors. Focusing on the delivery of photosensitizers to the tumor site and to specific intracellular compartments, we describe the conjugates of bacteriochlorophyll a, derivatives with carbohydrate and protein carriers. Boronated bacteriochlorins can be used in both photodynamic and boron neutron capture therapy. Topics: Antineoplastic Agents; Bacteriochlorophyll A; Humans; Models, Biological; Neoplasms; Photochemotherapy; Photosensitizing Agents; Porphyrins | 2008 |
13 other study(ies) available for bacteriochlorophylls and bacteriochlorin
Article | Year |
---|---|
Bio-inspired self-assembled bacteriochlorin nanoparticles for superior visualization and photothermal ablation of tumors.
Although hyperthermia-based photothermal therapy (PTT) has achieved great success in the battle against malignant tumors, various commonly used photothermal sensitizers still suffer from non-selective tumor accumulation, limited photothermal conversion efficiency, potential toxicity and side effects, as well as complex and low cost-effective preparation process. Therefore, novel photothermal sensitizers are urgently required. The well-organized self-assembling of natural bacteriochlorophylls with superior photothermal property may provide an interesting option for the engineering of ideal PTS.. Inspired by the self-assembly peripheral light-harvesting antennas of natural bacteriochlorin in microorganisms, a biomimetic light-harvesting nanosystem (Nano-Bc) was developed via bacteriochlorophylls self-arranging in aqueous phase. The characterization of Nano-Bc were measured using DLS, TEM, UV-vis-near-infrared spectroscopy and preclinical PA imaging system. The cytotoxicity of Nano-Bc was quantitatively evaluated via a standard MTT assay using mouse breast cancer 4T1 cells, and the in vivo photothermal eradication of tumor was investigated in the 4T1 breast tumor-bearing mouse model.. The obtained bacteriochlorin nanoparticles (Nano-Bc) exhibited ultra-high photothermal performance within the biological transparent window, showing superior heating capacity compared to commonly used photothermal sensitizers of organic dye indocyanine green and inorganic gold nanorods. Guiding by the inherent photoacoustic imaging of Nano-Bc, complete tumor elimination in vitro and vivo was evidenced upon laser irradiation.. The green and facile preparation, ultra-high photothermal effect in the transparent window, excellent photoacoustic imaging capacity, and great biosafety prompt, the bio-inspired Nano-Bc as a promising theranostic platform against cancer in the areas of healthcare. Topics: Animals; Bacteriochlorophylls; Cell Line, Tumor; Hyperthermia, Induced; Mice; Nanoparticles; Phototherapy; Theranostic Nanomedicine | 2023 |
Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors.
The Zn-BChl-containing reaction center (RC) produced in a bchD (magnesium chelatase) mutant of Rhodobacter sphaeroides assembles with six Zn-bacteriochlorophylls (Zn-BChls) in place of four Mg-containing bacteriochlorophylls (BChls) and two bacteriopheophytins (BPhes). This protein presents unique opportunities for studying biological electron transfer, as Zn-containing chlorins can exist in 4-, 5-, and (theoretically) 6-coordinate states within the RC. In this paper, the electron transfer perturbations attributed exclusively to coordination state effects are separated from those attributed to the presence, absence, or type of metal in the bacteriochlorin at the HA pocket of the RC. The presence of a 4-coordinate Zn(2+) ion in the HA bacteriochlorin instead of BPhe results in a small decrease in the rates of the P*→P(+)HA(-)→P(+)QA(-) electron transfer, and the charge separation yield is not greatly perturbed; however coordination of the Zn(2+) by a fifth ligand provided by a histidine residue results in a larger rate decrease and yield loss. We also report the first crystal structure of a Zn-BChl-containing RC, confirming that the HA Zn-BChl was either 4- or 5-coordinate in the two types of Zn-BChl-containing RCs studied here. Interestingly, a large degree of disorder, in combination with a relatively weak anomalous difference electron density was found in the HB pocket. These data, in combination with spectroscopic results, indicate partial occupancy of this binding pocket. These findings provide insights into the use of BPhe as the bacteriochlorin pigment of choice at HA in both BChl- and Zn-BChl-containing RCs found in nature. Topics: Bacterial Proteins; Bacteriochlorophylls; Crystallography, X-Ray; Kinetics; Models, Molecular; Mutation; Photosynthetic Reaction Center Complex Proteins; Porphyrins; Protein Conformation; Rhodobacter sphaeroides; Zinc | 2014 |
Reconstitution of a sequential reaction of two nitrogenase-like enzymes in the bacteriochlorophyll biosynthetic pathway of Rhodobacter capsulatus.
The parental structure of bacteriochlorophyll a, bacteriochlorin, is formed by a sequential operation of two nitrogenase-like enzymes, dark-operative protochlorophyllide oxidoreductase (DPOR) and chlorophyllide a oxidoreductase (COR). Both DPOR and COR consist of two components, Fe protein and MoFe protein cognates. Here we determined kinetic parameters of COR and established the reconstitution system for the formation of bacteriochlorin (3-vinyl bacteriochlorophyllide a) from porphyrin (protochlorophyllide) with purified components of DPOR and COR from Rhodobacter capsulatus. This reconstitution system confirmed the recent finding that COR catalyzes 8-vinyl reduction of 8-vinyl chlorophyllide a in addition to the known activity of C7C8 double bond reduction, and provides a promising model to investigate how two nitrogenase-like enzymes are coordinated in bacteriochlorophyll biosynthesis. Topics: Bacterial Proteins; Bacteriochlorophylls; Biosynthetic Pathways; Kinetics; Nitrogenase; Oxidoreductases Acting on CH-CH Group Donors; Porphyrins; Protochlorophyllide; Rhodobacter capsulatus | 2014 |
Triplet excited state energies and phosphorescence spectra of (bacterio)chlorophylls.
(Bacterio)Chlorophyll ((B)Chl) molecules play a major role in photosynthetic light-harvesting proteins, and the knowledge of their triplet state energies is essential to understand the mechanisms of photodamage and photoprotection, as the triplet excitation energy of (B)Chl molecules can readily generate highly reactive singlet oxygen. The triplet state energies of 10 natural chlorophyll (Chl a, b, c2, d) and bacteriochlorophyll (BChl a, b, c, d, e, g) molecules and one bacteriopheophytin (BPheo g) have been directly determined via their phosphorescence spectra. Phosphorescence of four molecules (Chl c2, BChl e and g, BPheo g) was characterized for the first time. Additionally, the relative phosphorescence to fluorescence quantum yield for each molecule was determined. The measurements were performed at 77K using solvents providing a six-coordinate environment of the Mg(2+) ion, which allows direct comparison of these (B)Chls. Density functional calculations of the triplet state energies show good correlation with the experimentally determined energies. The correlation determined computationally was used to predict the triplet energies of three additional (B)Chl molecules: Chl c1, Chl f, and BChl f. Topics: Bacteria; Bacteriochlorophylls; Electron Spin Resonance Spectroscopy; Energy Transfer; Photosynthesis; Porphyrins; Quantum Theory; Rhodobacter sphaeroides; Singlet Oxygen; Spectrometry, Fluorescence | 2014 |
Synthesis, photophysical and electrochemistry of near-IR absorbing bacteriochlorins related to bacteriochlorophyll a.
A series of new bacteriochlorins was synthesized using 13(2)-oxo-bacteriopyropheophorbide a (derived from bacteriochlorophyll a) as a starting material, which on reacting with o-phenylenediamine and 1,10-diaminonaphthalene afforded highly conjugated annulated bacteriochlorins with fused quinoxaline, benzimidazole, and perimidine rings, respectively. The absorption spectra of these novel bacteriochlorins demonstrated remarkably red-shifted intense Q(y) absorption bands observed in the range of 816-850 nm with high molar extinction coefficients (89,900-136,800). Treatment of 13(2)-oxo-bacteriopyropheophorbide a methyl ester with diazomethane resulted in the formation of bacterioverdins containing a fused six-membered methoxy-substituted cyclohexenone (verdin) as an isomeric mixture. The pure isomers which exhibit long-wavelength absorptions in the near-IR region (865-890 nm) are highly stable at room temperature with high reactivity with O(2) at the triplet photoexcited state and favorable redox potential and could be potential candidates for use as photosensitizers in photodynamic therapy (PDT). Topics: Absorption; Bacteriochlorophyll A; Electrochemistry; Molecular Structure; Photochemistry; Photochemotherapy; Photosensitizing Agents; Porphyrins; Quantum Theory; Spectroscopy, Near-Infrared | 2012 |
Synthesis and photophysical characterization of stable indium bacteriochlorins.
Bacteriochlorins have wide potential in photochemistry because of their strong absorption of near-infrared light, yet metallobacteriochlorins traditionally have been accessed with difficulty. Established acid-catalysis conditions [BF(3)·OEt(2) in CH(3)CN or TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2)] for the self-condensation of dihydrodipyrrin-acetals (bearing a geminal dimethyl group in the pyrroline ring) afford stable free base bacteriochlorins. Here, InBr(3) in CH(3)CN at room temperature was found to give directly the corresponding indium bacteriochlorin. Application of the new acid catalysis conditions has afforded four indium bacteriochlorins bearing aryl, alkyl/ester, or no substituents at the β-pyrrolic positions. The indium bacteriochlorins exhibit (i) a long-wavelength absorption band in the 741-782 nm range, which is shifted bathochromically by 22-32 nm versus the analogous free base species, (ii) fluorescence quantum yields (0.011-0.026) and average singlet lifetime (270 ps) diminished by an order of magnitude versus that (0.13-0.25; 4.0 ns) for the free base analogues, and (iii) higher average yield (0.9 versus 0.5) yet shorter average lifetime (30 vs 105 μs) of the lowest triplet excited state compared to the free base compounds. The differences in the excited-state properties of the indium chelates versus free base bacteriochlorins derive primarily from a 30-fold greater rate constant for S(1) → T(1) intersystem crossing, which stems from the heavy-atom effect on spin-orbit coupling. The trends in optical properties of the indium bacteriochlorins versus free base analogues, and the effects of 5-OMe versus 5-H substituents, correlate well with frontier molecular-orbital energies and energy gaps derived from density functional theory calculations. Collectively the synthesis, photophysical properties, and electronic characteristics of the indium bacteriochlorins and free base analogues reported herein should aid in the further design of such chromophores for diverse applications. Topics: Acids; Bacteria; Bacteriochlorophylls; Catalysis; Coordination Complexes; Electrons; Fluorescence; Indium; Kinetics; Light; Magnetic Resonance Spectroscopy; Molecular Conformation; Molecular Mimicry; Photochemistry; Photochemotherapy; Porphyrins; Pyrroles; Quantum Theory | 2011 |
Photophysical properties and electronic structure of stable, tunable synthetic bacteriochlorins: extending the features of native photosynthetic pigments.
Bacteriochlorins, which are tetrapyrrole macrocycles with two reduced pyrrole rings, are Nature's near-infrared (NIR) absorbers (700-900 nm). The strong absorption in the NIR region renders bacteriochlorins excellent candidates for a variety of applications including solar light harvesting, flow cytometry, molecular imaging, and photodynamic therapy. Natural bacteriochlorins are inherently unstable due to oxidative conversion to the chlorin (one reduced pyrrole ring) or the porphyrin. The natural pigments are also only modestly amenable to synthetic manipulation, owing to a nearly full complement of substituents on the macrocycle. Recently, a new synthetic methodology has afforded access to stable synthetic bacteriochlorins wherein a wide variety of substituents can be appended to the macrocycle at preselected locations. Herein, the spectroscopic and photophysical properties of 33 synthetic bacteriochlorins are investigated. The NIR absorption bands of the chromophores range from ∼700 to ∼820 nm; the lifetimes of the lowest excited singlet state range from ∼2 to ∼6 ns; the fluorescence quantum yields range from ∼0.05 to ∼0.25; and the yield of the lowest triplet excited state is ∼0.5. The spectroscopic/photophysical studies of the bacteriochlorins are accompanied by density functional theory (DFT) calculations that probe the characteristics of the frontier molecular orbitals. The DFT calculations indicate that the impact of substituents on the spectral properties of the molecules derives primarily from effects on the lowest unoccupied molecular orbital. Collectively, the studies show how the palette of synthetic bacteriochlorins extends the properties of the native photosynthetic pigments (bacteriochlorophylls). The studies have also elucidated design principles for tuning the spectral and photophysical characteristics as required for a wide variety of photochemical applications. Topics: Bacteriochlorophylls; Electrons; Pheophytins; Photosynthesis; Porphyrins; Quantum Theory; Spectroscopy, Near-Infrared | 2011 |
Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging.
The syntheses of novel near-infrared (NIR) dyes with excellent optical properties in biological tissues have driven the continued improvement of fluorescence imaging of deeply seated tumors. Bacteriochlorophyll a (Bchl), a dye synthesized by the phototrophic bacteria, R. sphaeroids, is particularly suited for deep tissue imaging due to its high absorbance coefficient and good fluorescence quantum yield in the NIR spectrum. However, obstacles that impede the development of this fluorophore are its poor stability and lack of tumor specificity. These issues ultimately limit its utility for tumor detection. Herein we describe a robust synthesis of a novel Bchl analog, bacteriochlorin e(6) bisoleate (BchlBOA), which is chemically stable, has excellent photophysical properties (ex, 752 nm; em, 762 nm) and is tailored for the incorporation into a tumor targetable high-density lipoprotein (HDL)-like nanoparticle (NP). Incorporating BchlBOA into HDL (HDL-BchlBOA) yielded 12 nm sized particles, corresponding well with the diameter of native HDL. Functional cell uptake studies showed that HDL-BchlBOA was taken up by cells expressing the HDL receptor, scavenger receptor B type I (SR-BI), and was inhibited by 25-fold excess native HDL. Furthermore, the NP was successfully detected in KB cancer cells both in vitro and in tumor xenografts. Taken together, these results demonstrate that we successfully synthesized and formulated a stable analog of Bchl that is capable of being incorporated within HDL-like NPs for tumor-targeted imaging. Topics: Animals; Bacteriochlorophylls; Cell Line, Tumor; Diagnostic Imaging; Drug Stability; Female; Humans; Lipoproteins, HDL; Mice; Mice, Nude; Nanoparticles; Neoplasms, Experimental; Porphyrins; Spectroscopy, Near-Infrared; Transplantation, Heterologous | 2009 |
Highly selective synthesis of the ring-B reduced chlorins by ferric chloride-mediated oxidation of bacteriochlorins: effects of the fused imide vs isocyclic ring on photophysical and electrochemical properties.
The oxidation of bacteriopyropheophorbide with ferric chloride hexahydrate or its anhydrous form produced the ring-D oxidized (ring-B reduced) chlorin in >95% yield. Replacing the five-member isocyclic ring in bacteriopyropheophorbide- a with a fused six-member N-butylimide ring system made no difference in regioselective oxidation, and the corresponding ring-B reduced chlorin was isolated in almost quantitative yield. When the oxidant was replaced by 2,3-dichloro-5,6-dicyano-p-benzoquinone, which is frequently used at the oxidizing stage of the porphyrin synthesis, the ring-B oxidized (ring-D reduced) chlorins were obtained. With both ring-B reduced and ring-D reduced chlorins in hand, their photophysical and electrochemical properties were examined and compared for the first time. The ring-B reduced chlorine 20, with a fused six-member N-butylimide ring, exhibits the most red-shifted absorption band (at lambda(max) = 746 nm), the lowest fluorescence quantum yield (4.5%), and the largest quantum yield of singlet oxygen formation (67%) among the reduced ring-B and ring-D chlorins investigated in this study. Measurements of the one-electron oxidation and reduction potentials show that compound 20 is also the easiest to oxidize among the examined compounds and the third easiest to reduce. In addition, the 1.62 eV HOMO-LUMO gap of 20 is the smallest of the examined compounds, and this agrees with values calculated using the DFT method. Spectroelectrochemical measurements afforded UV-visible absorption spectra for both the radical cations and radical anions of the examined chlorins. The ring-B reduced compound 20, with a fused six-member N-butylimide ring, is regarded as the most promising candidate in this study for photodynamic therapy because it has the longest wavelength absorption and the largest quantum yield of singlet oxygen formation among the compounds investigated. Topics: Bacteriochlorophyll A; Chlorides; Circular Dichroism; Computer Simulation; Electrochemistry; Ferric Compounds; Imides; Magnetic Resonance Spectroscopy; Models, Chemical; Molecular Conformation; Oxidation-Reduction; Photochemistry; Porphyrins; Quantum Theory; Reference Standards; Singlet Oxygen; Spectrometry, Fluorescence; Stereoisomerism | 2008 |
Characterization of porphyrins, chlorins, and bacteriochlorins formed via allomerization of bacteriochlorophyll a. Synthesis of highly stable bacteriopurpurinimides and their metal complexes.
Allomerization of bacteriochlorophyll a (Bchl a) was studied under various reaction conditions. Bchl a on stirring with KOH/propanol produced an "unstable bacteriochlorin", which decomposed in acidic conditions to give a complex mixture containing bacteriopurpurin a as a principal component. The yields of other compounds varied and were found to be dependent on reaction condition. The structures of the isolated porphyrins, chlorins, and bacteriochlorins, related to Bchl a, were assigned on the basis of 1D, 2D NMR (ROESY), and mass spectroscopy analyses. The presence of fused anhydride rings in porphyrin, chlorin, and bacterichlorin systems showed a significant influence on their optical properties. Compared to bacteriochlorophyll a and bacteriopheophytin, the related structurally modified analogues, e.g., the bacteriopurpurin a, 13(1)/15(1)-N-alkyl isoimide, and the imide analogues were found to be more stable with a significant difference in spectroscopic properties. Bacteriochlorins containing anhydride, imide, or isoimide cyclic rings demonstrated a significant bathochromic shift of their Q bands in their electronic absorption spectra. Under basic conditions the formation of the 12-hydroxymethyl, 12-formyl, and 12-methylene analogues as byproducts from the 12-methyl-bacteriopurpurin-N-hexylimide could be due to subsequent oxidation of the vinylogous enolate intermediates. To investigate the effect of the central metal in the electronic spectra, the stable bacteriopurpurin-18-N-hexylimide was converted to a series of metal complexes [Zn(II), Cd(II), and Pd(II)] by following the direct or transmetalation approaches. Compared to the free-base analogue, these complexes showed a remarkable shift in their electronic absorption spectra. Topics: Anhydrides; Anthraquinones; Bacteriochlorophyll A; Imides; Mass Spectrometry; Organometallic Compounds; Porphyrins | 2006 |
De novo synthesis of stable tetrahydroporphyrinic macrocycles: bacteriochlorins and a tetradehydrocorrin.
[structures: see text] Bacteriochlorins (tetrahydroporphyrins) are attractive for diverse photochemical applications owing to their strong absorption in the near-infrared spectral region, as exemplified by the bacterial photosynthetic pigment bacteriochlorophyll a, yet often are labile toward dehydrogenation to give the chlorin. Tetradehydrocorrins (ring-contracted tetrahydroporphyrins) are attractive for studies of catalysis analogous to that of vitamin B12. An eight-step synthesis toward such tetrahydroporphyrinic macrocycles begins with p-tolualdehyde and proceeds to a dihydrodipyrrin-acetal (1) bearing a geminal dimethyl group and a p-tolyl substituent. Self-condensation of 1 in CH3CN containing BF3 x OEt2 at room temperature afforded a readily separable mixture of two free base bacteriochlorins and a free base B,D-tetradehydrocorrin. Each bacteriochlorin contains two geminal dimethyl groups to lock-in the bacteriochlorin hydrogenation level, p-tolyl substituents at opposing (2,12) beta-positions, and the absence (H-BC) or presence (MeO-BC) of a methoxy group at the 5- (meso) position. The B,D-tetradehydrocorrin (TDC) lies equidistant between the hydrogenation levels of corrin and corrole, is enantiomeric, and contains two geminal dimethyl groups, 2,12-di-p-tolyl substituents, and an acetal group at the pyrroline-pyrrole junction. Examination of the effect of the concentrations of 1 (2.5-50 mM) and BF3 x OEt2 (10-500 mM) revealed a different response surface for each of H-BC, MeO-BC, and TDC, enabling relatively selective preparation of a given macrocycle. The highest isolated yield of each was 49, 30, and 66%, respectively. The macrocycles are stable to routine handling in light and air. The bacteriochlorins display characteristic spectral features; for example, H-BC exhibits near-IR absorption (lambda(Qy) = 737 nm, epsilon(Qy) = 130,000 M(-1) cm(-1)) and emission (lambda(em) = 744 nm, phi(f) = 0.14). In summary, this simple entry to stable bacteriochlorins and tetradehydrocorrins should facilitate a wide variety of applications. Topics: Bacteriochlorophyll A; Catalysis; Hydrogenation; Macrocyclic Compounds; Molecular Structure; Photochemistry; Pigments, Biological; Porphyrins; Spectrum Analysis | 2005 |
Self-aggregation of synthetic zinc oxo-bacteriochlorins bearing substituents characteristic of chlorosomal chlorophylls.
We prepared novel zinc 8-ethyl-8-methyl-7-oxo- and 7-ethyl-7-methyl-8-oxo-bacteriochlorins 1 and 2 possessing substituents characteristic of chlorosomal chlorophylls, exclusively observed in extramembraneous light-harvesting antennas of photosynthetic green bacteria. The electronic absorption spectra of monomeric 1 and 2 in THF were obviously different: the Q(y) maximum of the former was 724 and that of the latter was 683 nm. This observed spectral difference was clearly explained by theoretical ZINDO/S calculation of their energetically minimized molecules. The optical properties of monomeric 1/2 were controlled by the electronic effect of the 7/8-oxo groups. Specific spectral changes in the electronic, CD, and FT-IR absorption spectra by dilution of the monomeric THF solutions of 1/2 with a 100/200-fold volume of cyclohexane showed the formation of chlorosomal self-aggregation species constructed by 13-C=O...H-O(3(1))...Zn and pi-pi stacking. Especially, the red-shift values in the Q(y) band of 1/2 by self-aggregation were 2450/1970 cm(-1), indicating that exciton interaction among the composite molecules in the self-aggregation of 1 was stronger than in those of 2. Molecular model calculations for dodecamers of 1/2 based on a parallel chain arrangement gave partially different supramolecular structures; the specific hydrogen-bonding distances in 2-dodecamer were larger than those of 1-dodecamer, while both coordinations gave the same Zn-O distance. These modeling results showed that 1 was more tightly packed in the self-aggregates to give a larger red-shift value in the Q(y) band by self-aggregation than 2. The difference in the supramolecular structures is mainly ascribable to the steric effect of 8/7-dialkyl groups in self-aggregates of 1/2. Topics: Bacteriochlorophylls; Chloroflexus; Models, Chemical; Porphyrins; Zinc | 2005 |
Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes.
It is well-known that time-dependent density functional theory (TDDFT) yields substantial errors for the excitation energies of charge-transfer (CT) excited states, when approximate standard exchange-correlation (xc) functionals are used, for example, SVWN, BLYP, or B3LYP. Also, the correct 1/R asymptotic behavior of CT states with respect to a distance coordinate R between the separated charges of the CT state is not reproduced by TDDFT employing these xc-functionals. Here, we demonstrate by analysis of the TDDFT equations that the first failure is due to the self-interaction error in the orbital energies from the ground-state DFT calculation, while the latter is a similar self-interaction error in TDDFT arising through the electron transfer in the CT state. Possible correction schemes, such as inclusion of exact Hartree-Fock or exact Kohn-Sham exchange, as well as aspects of the exact xc-functional are discussed in this context. Furthermore, a practical approach is proposed which combines the benefits of TDDFT and configuration interaction singles (CIS) and which does not suffer from electron-transfer self-interaction. The latter approach is applied to a (1,4)-phenylene-linked zincbacteriochlorin-bacteriochlorin complex and to a bacteriochlorophyll-spheroidene complex, in which CT states may play important roles in energy and electron-transfer processes. The errors of TDDFT alone for the CT states are demonstrated, and reasonable estimates for the true excitation energies of these states are given. Topics: Bacteriochlorophylls; Carotenoids; Electron Transport; Energy Transfer; Metalloporphyrins; Models, Chemical; Photosynthetic Reaction Center Complex Proteins; Porphyrins; Proteobacteria; Systems Theory; Time Factors | 2004 |