bacillomycin-d has been researched along with fengycin* in 7 studies
1 review(s) available for bacillomycin-d and fengycin
6 other study(ies) available for bacillomycin-d and fengycin
Article | Year |
---|---|
Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.
Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases. Topics: Antibiosis; Antifungal Agents; Antimicrobial Cationic Peptides; Bacillus; Base Sequence; Biological Control Agents; Botrytis; DNA, Ribosomal; Endophytes; Lipopeptides; Microbial Sensitivity Tests; Peptides; Pest Control, Biological; Plant Diseases; Plant Leaves; Plant Roots; Plant Stems; Solanum lycopersicum; Spectrometry, Mass, Electrospray Ionization | 2015 |
Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae.
In recent years, Bacillus species have received considerable attention for the biological control of many fungal diseases. In this study, Bacillus amyloliquefaciens Q-426 was tested for its potential use against a variety of plant pathogens. Our screen for genes involved in the biosynthesis of antifungal agents revealed that the fen and bmy gene clusters are present in the Q-426 genome. Lipopeptides such as bacillomycin D, fengycin A, and fengycin B were purified from the bacterial culture broth and subsequently identified by ESI-mass spectrometry. The minimal inhibitory concentration of fengycin A against Fusarium oxysporum f. sp. spinaciae W.C. Snyder & H.N. Hansen O-27 was determined to be 31.25 μg ml(-1) . However, exposure of fungal cells to 50 μg ml(-1) of fengycin A did not allow permeation of fluorescein diacetate into the cytoplasm through the cell membrane. Moreover, leakage of intracellular inorganic cations, nucleic acid and protein were also not detected, indicating that the fungal cell membrane is not the primary target of action for fengycin A. Profound morphological changes were observed in the F. oxysporum strain and spore germination was completely inhibited, suggesting that 50 μg ml(-1) of fengycin A acts, at least, as a fungistatic agent. Topics: Antibiosis; Antifungal Agents; Antimicrobial Cationic Peptides; Bacillus; Fusarium; Lipopeptides; Microbial Sensitivity Tests; Multigene Family; Peptides; Pest Control, Biological | 2014 |
Sequence characterization and computational analysis of the non-ribosomal peptide synthetases controlling biosynthesis of lipopeptides, fengycins and bacillomycin D, from Bacillus amyloliquefaciens Q-426.
Lipopeptides secreted by bacteria attract interest because of their uses in biomedicine, biotechnology and food technology; however, harnessing their megasynthases (non-ribosomal peptide synthetases, NRPSs) has met with some difficulties in heterologous expression and crystallization. Here, we used similarity and phylogenetic analysis of NRPS sequences, including the fengycin and iturin family synthetases from Bacillus spp., and have developed a novel approach for delineating the length and boundaries of NRPS domains from Bacillus amyloliquefaciens strain Q-426. The sequences were further characterized (including specific residues and conserved motifs) that gave insight into the basis of the substrate specificity. Data from the prediction of the NRPS domains, obtained by the self-optimized prediction method with Alignment program, showed they are all structurally unstable, making it difficult to determine their crystal structures. Topics: Antimicrobial Cationic Peptides; Bacillus; Computational Biology; DNA, Bacterial; Genes, Bacterial; Lipopeptides; Peptide Synthases; Peptides; Phylogeny; Sequence Analysis, DNA | 2013 |
Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation.
Bacillus amyloliquefaciens strains are capable of suppressing soilborne pathogens through the secretion of an array of lipopeptides and root colonization, and biofilm formation ability is considered a prerequisite for efficient root colonization. In this study, we report that one of the lipopeptide compounds (bacillomycin D) produced by the rhizosphere strain Bacillus amyloliquefaciens SQR9 not only plays a vital role in the antagonistic activity against Fusarium oxysporum but also affects the expression of the genes involved in biofilm formation. When the bacillomycin D and fengycin synthesis pathways were individually disrupted, mutant SQR9M1, which was deficient in the production of bacillomycin D, only showed minor antagonistic activity against F. oxysporum, but another mutant, SQR9M2, which was deficient in production of fengycin, showed antagonistic activity equivalent to that of the wild-type strain of B. amyloliquefaciens SQR9. The results from in vitro, root in situ, and quantitative reverse transcription-PCR studies demonstrated that bacillomycin D contributes to the establishment of biofilms. Interestingly, the addition of bacillomycin D could significantly increase the expression levels of kinC gene, but KinC activation is not triggered by leaking of potassium. These findings suggest that bacillomycin D contributes not only to biocontrol activity but also to biofilm formation in strain B. amyloliquefaciens SQR9. Topics: Antibiosis; Antifungal Agents; Antimicrobial Cationic Peptides; Bacillus; Biofilms; Biosynthetic Pathways; Fusarium; Gene Expression Profiling; Gene Expression Regulation, Bacterial; Gene Knockout Techniques; Lipopeptides; Peptides | 2013 |
Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola.
In previous studies, Bacillus amyloliquefaciens C06 has been proven to be effective in controlling brown rot of stone fruit caused by Monilinia fructicola. When tested in vitro, cell-free filtrate of B. amyloliquefaciens C06 significantly inhibited mycelial growth and conidial germination of the fungal pathogen. This study aimed to determine the role of the antifungal compound(s) in the cell-free filtrate of B. amyloliquefaciens C06 by an approach combining a DNA-based suppression subtractive hybridization (SSH) method with MALDI-TOF-MS analysis. It was demonstrated that B. amyloliquefaciens C06 harbored two genes, bmyC and fenD, involved in biosynthesis of bacillomycin D and fengycin, two lipopeptides belonging to the iturin and fengycin family, respectively. To determine the roles of bacillomycin D and fengycin of B. amyloliquefaciens C06 in suppressing M. fructicola, the mutants of B. amyloliquefaciens C06 deficient in producing bacillomy- cin D, fengycin or both were constructed, and evaluated in vitro together with the wild-type B. amyloliquefaciens C06. The results indicated that bacillomycin D and fengycin jointly contributed to the inhibition of conidial germination of M. fructicola, and fengycin played a major role in suppressing mycelial growth of the fungal pathogen. Topics: Antibiosis; Antifungal Agents; Antimicrobial Cationic Peptides; Ascomycota; Bacillus; Gene Deletion; Genes, Bacterial; Lipopeptides; Mycelium; Nucleic Acid Hybridization; Peptides; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Spores, Fungal | 2011 |
Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat.
Bacillus species are well known for their ability to control plant diseases through various mechanisms, including the production of secondary metabolites. Bacillus subtilis DFH08, an antagonist of Fusarium graminearum, and other Bacillus spp. that are antagonists of common fungal pathogens of canola were screened for peptide synthetase biosynthetic genes of fengycin and bacillomycin D. Specific polymerase chain reaction (PCR) primers identified B. subtilis strains DFH08 and 49 for the presence of the fenD gene of the fengycin operon. Bacillus cereus DFE4, Bacillus amyloliquefaciens strains DFE16 and BS6, and B. subtilis 49 were identified for the presence of the bamC gene of the bacillomycin D synthetase biosynthetic operon. Both fengycin and bacillomycin D were detected in the culture extract of strain Bs49, characterized through MALDI-TOF-MS (matrix-assisted laser desorption ionization - time of flight - mass spectrometry), and their antifungal activities demonstrated against F. graminearum and Sclerotinia sclerotiorum. This study designed and used specific PCR primers for the detection of potential fengycin- and bacillomycin D-producing bacterial antagonists and confirmed the molecular detection with the biochemical detection of the corresponding antibiotic produced. This is also the first report of a B. cereus strain (DFE4) to have bacillomycin D biosynthetic genes. Bacteria that synthesize these lipopeptides could act as natural genetic sources for genetic engineering of the peptide synthetases for production of novel peptides. Topics: Antimicrobial Cationic Peptides; Bacillus; Base Sequence; Brassica napus; Chromatography; Fungi; Lipopeptides; Lipoproteins; Peptides; Pest Control, Biological; Plant Diseases; Polymerase Chain Reaction; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Spectrum Analysis; Triticum | 2007 |