aztreonam has been researched along with serine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (28.57) | 18.7374 |
1990's | 2 (28.57) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (14.29) | 24.3611 |
2020's | 2 (28.57) | 2.80 |
Authors | Studies |
---|---|
Bush, K; Dougherty, TJ; Gougoutas, JZ; Malley, MF; Ohringer, S; Singer, SB; Sowek, JA | 1 |
Billot-Klein, D; Collatz, E; Gutmann, L; Tran Van Nhieu, G; Williamson, R | 1 |
Aklonis, CA; Gillum, AM; O'Sullivan, J; Souser, ML; Sykes, RB | 1 |
Frère, JM; Lamotte-Brasseur, J; Matagne, A | 1 |
Danizger, LH; Deraedt, MF; Harrington, AT; Wenzler, E | 1 |
Dong, D; Feng, K; Gong, H; Jia, N; Liu, Y; Lv, Z; Martins, FS; Sy, S; Sy, SKB; Yu, M; Zhang, J; Zhu, P; Zhu, S; Zhu, Y | 1 |
Biagi, M; Deshpande, LM; Lee, M; Mendes, RE; Patel, S; Shajee, A; Wenzler, E; Wu, T | 1 |
7 other study(ies) available for aztreonam and serine
Article | Year |
---|---|
Substitution of lysine at position 104 or 240 of TEM-1pTZ18R beta-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam.
Topics: Aztreonam; beta-Lactamases; Binding Sites; Cephalosporins; Escherichia coli; Hydrolysis; Kinetics; Lysine; Models, Molecular; Molecular Conformation; Mutagenesis, Site-Directed; Protein Conformation; Serine; Substrate Specificity | 1991 |
Substitution of serine for arginine in position 162 of TEM-type beta-lactamases extends the substrate profile of mutant enzymes, TEM-7 and TEM-101, to ceftazidime and aztreonam.
Topics: Amino Acid Sequence; Arginine; Aztreonam; beta-Lactamases; Ceftazidime; Cloning, Molecular; DNA, Bacterial; Drug Resistance, Microbial; Escherichia coli; Genes, Bacterial; Isoelectric Focusing; Mutation; R Factors; Restriction Mapping; Serine; Substrate Specificity | 1989 |
Biosynthesis of monobactam compounds: origin of the carbon atoms in the beta-lactam ring.
Topics: Aztreonam; Bacteria; beta-Lactams; Cell-Free System; Chemical Phenomena; Chemistry; Culture Media; Cystine; Serine | 1982 |
Interactions between active-site serine beta-lactamases and so-called beta-lactamase-stable antibiotics. Kinetic and molecular modelling studies.
Topics: Actinomycetales; Anti-Bacterial Agents; Aztreonam; beta-Lactamases; Binding Sites; Kinetics; Models, Molecular; Serine; Streptomyces | 1993 |
Synergistic activity of ceftazidime-avibactam and aztreonam against serine and metallo-β-lactamase-producing gram-negative pathogens.
Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; beta-Lactamases; Ceftazidime; Drug Combinations; Drug Synergism; Enterobacteriaceae; Gram-Negative Bacterial Infections; Humans; Pseudomonas aeruginosa; Serine | 2017 |
Aztreonam/avibactam effect on pharmacodynamic indices for mutant selection of Escherichia coli and Klebsiella pneumoniae harbouring serine- and New Delhi metallo-β-lactamases.
Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; beta-Lactamases; Ceftazidime; Drug Combinations; Escherichia coli; Klebsiella pneumoniae; Microbial Sensitivity Tests; Serine | 2021 |
Aztreonam in combination with imipenem-relebactam against clinical and isogenic strains of serine and metallo-β-lactamase-producing enterobacterales.
Topics: Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; beta-Lactamases; Escherichia coli; Humans; Imipenem; Klebsiella pneumoniae; Microbial Sensitivity Tests; Serine | 2022 |