azoxystrobin and propiconazole

azoxystrobin has been researched along with propiconazole* in 12 studies

Reviews

1 review(s) available for azoxystrobin and propiconazole

ArticleYear
Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt.
    Phytopathology, 2011, Volume: 101, Issue:9

    The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of $0.12/kg ($2.97/bushel) and application costs of $40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.

    Topics: Acetates; Carbamates; Edible Grain; Fungicides, Industrial; Imines; Methacrylates; Plant Diseases; Plant Leaves; Pyrazoles; Pyrimidines; Risk Factors; Strobilurins; Triazoles; United States; Zea mays

2011

Other Studies

11 other study(ies) available for azoxystrobin and propiconazole

ArticleYear
Statistical evaluation of analytical curves for quantification of pesticides in bananas.
    Food chemistry, 2021, May-30, Volume: 345

    The aim of this paper is to statistically validate the analytical curves of a chromatography method to identify and quantify azoxystrobin, difenoconazole and propiconazole residues in banana pulp, using QuEChERS and GC-SQ/MS. A matrix-matched calibration was used and analytical curves were estimated by weighted least squares regression (WLS), confirming heteroscedasticity for all compounds. Statistical tests were performed to confirm the quality adjustment of the proposed linear model. The correlation coefficient for azoxystrobin, difenoconazole and propiconazole were, respectively, 0.9985, 0.9966 and 0.9997 (concentration range: 0.05 and 2.0 mg kg

    Topics: Brazil; Dioxolanes; Gas Chromatography-Mass Spectrometry; Limit of Detection; Musa; Pesticide Residues; Pyrimidines; Reproducibility of Results; Strobilurins; Triazoles

2021
Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand.
    Scientific reports, 2020, 10-01, Volume: 10, Issue:1

    In this study, the fungicidal activities of the fungicides azoxystrobin, difenoconazole + propiconazole, carbendazim, flutriafol, fluopyram + tebuconazole, mancozeb and thiophanate-methyl against rice blast and dirty panicle pathogens were evaluated under laboratory and field conditions. Mancozeb exhibited the highest level of fungicidal activity against the blast pathogen Pyricularia oryzae, with an EC

    Topics: Antifungal Agents; Ascomycota; Benzamides; Benzimidazoles; Carbamates; Dioxolanes; Maneb; Oryza; Plant Diseases; Pyridines; Pyrimidines; Strobilurins; Thailand; Triazoles; Zineb

2020
Agrochemicals: Effect on genetic resistance in yeasts colonizing winter wheat kernels.
    Ecotoxicology and environmental safety, 2018, Oct-30, Volume: 162

    Crop protection agents are widely used in modern agriculture and exert direct effects on non-target microorganisms such as yeasts. Yeasts abundantly colonize wheat grain and affect its chemical composition. They can also limit pathogen growth. This study evaluated the sensitivity of yeast communities colonizing winter wheat kernels to benzimidazole, strobilurin, triazole and morpholine fungicides, trinexapac-ethyl, a commercial mixture of o-nitrophenol+p-nitrophenol+5-nitroguaiacol, and chitosan applied during the growing season of winter wheat and in vitro in a diffusion test. A molecular identification analysis of yeasts isolated from winter wheat kernels was performed, and nucleotide polymorphisms in the CYTb gene (G143A) conferring resistance to strobilurin fungicides in yeast cells were identified. The size of yeast communities increased during grain storage, and the total counts of endophytic yeasts were significantly (85%) reduced following intensive fungicide treatment (fenpropimorph, a commercial mixture of pyraclostrobin, epoxiconazole and thiophanate-methyl). This study demonstrated that agrochemical residues in wheat grain can drive selection of yeast communities for reduced sensitivity to xenobiotics. A mutation in the CYTb gene (G143A) was observed in all analyzed isolates of the following azoxystrobin-resistant species: Aureobasidium pullulans, Debaryomyces hansenii, Candida albicans and C. sake. Agrochemicals tested in vitro were divided into four classes of toxicity to yeasts: (1) tebuconazole and a commercial mixture of flusilazole and carbendazim - most toxic to yeasts; (2) fenpropimorph and a commercial mixture of pyraclostrobin and epoxyconazole; (3) propiconazole, chitosan, thiophanate-methyl and a commercial mixture of o-nitrophenol, p-nitrophenol and 5-nitroguaiacol; (4) trinexapac-ethyl and azoxystrobin - least toxic to yeasts. It was found that agrochemicals can have an adverse effect on yeast abundance and the composition of yeast communities, mostly due to differences in fungicide resistance between yeast species, including the clinically significant C. albicans.

    Topics: Agaricales; Agrochemicals; Ascomycota; Benzimidazoles; Candida albicans; Carbamates; Drug Resistance, Fungal; Epoxy Compounds; Fungicides, Industrial; Microbial Sensitivity Tests; Pesticide Residues; Plant Diseases; Pyrimidines; Seasons; Silanes; Strobilurins; Triazoles; Triticum; Xenobiotics; Yeasts

2018
Does sea-dyke construction affect the spatial distribution of pesticides in agricultural soils? - A case study from the Red River Delta, Vietnam.
    Environmental pollution (Barking, Essex : 1987), 2018, Volume: 243, Issue:Pt B

    The Red River Delta is a major agricultural production area of Vietnam with year-round use of pesticides for paddy rice cultivation and other production systems. The delta is protected from flooding, storm surges and saline water intrusion by a sophisticated river and sea-dyke system. Little is known about the effects of such a dyke system on pesticide pollution in the enclosed landscape. Our aim was to address this gap by i) determining pesticide prevalence in soils and sediments within a dyked agricultural area, and by ii) assessing whether and to which degree this dyke system might affect the spatial distribution of pesticides. After sampling paddy rice fields (topsoil) and irrigation ditches (sediment) perpendicular to the dyke in Giao Thuy district, we analysed 12 of the most commonly used pesticides in this area. In soils, we detected most frequently isoprothiolane (100% detection frequency), chlorpyrifos (85%) and propiconazole (41%) while in sediments isoprothiolane (71%) and propiconazole (71%) were most frequently found. Maximum concentrations reached 42.6 μg isoprotiolane kg

    Topics: Agriculture; Chlorpyrifos; Environmental Monitoring; Environmental Pollution; Floods; Oryza; Pesticides; Pyrimidines; Rivers; Soil; Soil Pollutants; Specimen Handling; Strobilurins; Thiophenes; Triazoles; Vietnam; Water Pollutants, Chemical

2018
Temporal Dynamics and Spatial Variation of Azoxystrobin and Propiconazole Resistance in Zymoseptoria tritici: A Hierarchical Survey of Commercial Winter Wheat Fields in the Willamette Valley, Oregon.
    Phytopathology, 2017, Volume: 107, Issue:3

    Fungicide resistance can cause disease control failure in agricultural systems, and is particularly concerning with Zymoseptoria tritici, the causal agent of Septoria tritici blotch of wheat. In North America, the first quinone outside inhibitor resistance in Z. tritici was discovered in the Willamette Valley of Oregon in 2012, which prompted this hierarchical survey of commercial winter wheat fields to monitor azoxystrobin- and propiconazole-resistant Z. tritici. Surveys were conducted in June 2014, January 2015, May 2015, and January 2016. The survey was organized in a hierarchical scheme: regions within the Willamette Valley, fields within the region, transects within the field, and samples within the transect. Overall, frequency of azoxystrobin-resistant isolates increased from 63 to 93% from June 2014 to January 2016. Resistance to azoxystrobin increased over time even within fields receiving no strobilurin applications. Propiconazole sensitivity varied over the course of the study but, overall, did not significantly change. Sensitivity to both fungicides showed no regional aggregation within the Willamette Valley. Greater than 80% of spatial variation in fungicide sensitivity was at the smallest hierarchical scale (within the transect) of the survey for both fungicides, and the resistance phenotypes were randomly distributed within sampled fields. Results suggest a need for a better understanding of the dynamics of fungicide resistance at the landscape level.

    Topics: Agriculture; Ascomycota; Drug Resistance, Fungal; Fungicides, Industrial; Methacrylates; Oregon; Plant Diseases; Pyrimidines; Strobilurins; Surveys and Questionnaires; Triazoles; Triticum

2017
Fate and transport of agriculturally applied fungicidal compounds, azoxystrobin and propiconazole.
    Chemosphere, 2016, Volume: 146

    Fungicidal active ingredients azoxystrobin and propiconazole, individually and in combination, have been marketed worldwide in a range of fungicide treatment products for preventative and curative purposes, respectively. Their presence in streams located throughout the midwestern and southeastern United States warrant the need for research into the potential routes of transport of these fungicides in an agricultural field setting. Potential canopy penetration and drift effects of these fungicides during aerial and ground applications were studied in the current project. Canopy penetration was observed for both application types, however drift was associated only with the aerial application of these fungicides. Azoxystrobin and propiconazole persisted in the soil up to 301 d, with peak concentrations occurring approximately 30 d after application. The predominant mode of transport for these compounds was agricultural runoff water, with the majority of the fungicidal active ingredients leaving the target area during the first rain event following application. The timing of application in relation to the first rain event significantly affected the amount of loss that occurred, implying application practices should follow manufacturer recommended guidelines.

    Topics: Agriculture; Environmental Monitoring; Fungicides, Industrial; Illinois; Methacrylates; Pyrimidines; Rain; Soil; Soil Pollutants; Strobilurins; Triazoles

2016
Effect of Fungicide Applications on Monilinia fructicola Population Diversity and Transposon Movement.
    Phytopathology, 2016, Volume: 106, Issue:12

    In this study, we investigated whether fungicide-induced mutagenesis previously reported in Monilinia fructicola could accelerate genetic changes in field populations. Azoxystrobin and propiconazole were applied to nectarine trees at weekly intervals for approximately 3 months between bloom and harvest in both 2013 and 2014. Fungicides were applied at half-label rate to allow recovery of isolates and to increase chances of sublethal dose exposure. One block was left unsprayed as a control. In total, 608 single-spore isolates were obtained from blighted blossoms, cankers, and fruit to investigate phenotypic (fungicide resistance) and genotypic (simple-sequence repeat [SSR] loci and gene region) changes. In both years, populations from fungicide-treated and untreated fruit were not statistically different in haploid gene diversity (P = 0.775 for 2013 and P = 0.938 for 2014), allele number (P = 0.876 for 2013 and P = 0.406 for 2014), and effective allele number (P = 0.861 for 2013 and P = 0.814 for 2014). Isolates from blossoms and corresponding cankers of fungicide treatments revealed no changes in SSR analysis or evidence for induced Mftc1 transposon translocation. No indirect evidence for increased genetic diversity in the form of emergence of reduced sensitivity to azoxystrobin, propiconazole, iprodione, and cyprodinil was detected. High levels of population diversity in all treatments provided evidence for sexual recombination of this pathogen in the field, despite apparent absence of apothecia in the orchard. Our results indicate that fungicide-induced, genetic changes may not occur or not occur as readily in field populations as they do under continuous exposure to sublethal doses in vitro.

    Topics: Ascomycota; DNA Transposable Elements; Fruit; Fungicides, Industrial; Genetic Variation; Genotype; Methacrylates; Mutagenesis; Plant Diseases; Prunus persica; Pyrimidines; Strobilurins; Trees; Triazoles

2016
Adaptation to fungicides in Monilinia fructicola isolates with different fungicide resistance phenotypes.
    Phytopathology, 2008, Volume: 98, Issue:2

    The ability to develop fungicide resistance was assessed in Monilinia fructicola isolates with different fungicide sensitivity phenotypes by adapting mycelium and conidia to increasing concentrations of selective fungicides and UV mutagenesis. Results showed that adaptation to Quinone outside inhibitor (QoI) fungicide azoxystrobin and sterol demethylation inhibitor (DMI) fungicide propiconazole was more effective in conidial-transfer experiments compared to mycelial-transfer experiments. DMI-resistant (DMI-R) isolates adapted to significantly higher doses of azoxystrobin in both, mycelial- and conidial-transfer experiments compared to benzimidazole-resistant (BZI-R) and sensitive (S) isolates. Adaptation to propiconazole in conidial-transfer experiments was accelerated in BZI-R isolates when a stable, nonlethal dose of 50 microg/ml thiophanate-methyl was added to the selection medium. One of two azoxystrobin-resistant mutants from DMI-R isolates did not show any fitness penalties; the other isolate expired before further tests could be carried out. The viable mutant caused larger lesions on detached peach fruit sprayed with azoxystrobin compared to the parental isolate. The azoxystrobin sensitivity of the viable mutant returned to baseline levels after the mutant was transferred to unamended medium. However, azoxystrobin resistance recovered quicker in the mutant compared to the corresponding parental isolate after renewed subculturing on medium amended with 0.2 and 1 microg/ml azoxystrobin; only the mutant but not the parental isolate was able to adapt to 5 microg/ml azoxystrobin. In UV mutagenesis experiments, the DMI-R isolates produced significantly more mutants compared to S isolates. All of the UV-induced mutants showed stable fungicide resistance with little fitness penalty. This study indicates the potential for QoI fungicide resistance development in M. fructicola in the absence of a mutagen and provides evidence for increased mutability and predisposition to accelerated adaptation to azoxystrobin in M. fructicola isolates resistant to DMI fungicides.

    Topics: Ascomycota; Benzimidazoles; Drug Resistance, Fungal; Fungicides, Industrial; Methacrylates; Mutagenesis; Mycelium; Plant Diseases; Prunus; Pyrimidines; Spores, Fungal; Strobilurins; Triazoles; Ultraviolet Rays

2008
Evaluation of plant activator and chemical fungicides on leaf blight (Bipolaris sorokiniana) development and yield of wheat.
    Pakistan journal of biological sciences : PJBS, 2007, Jun-01, Volume: 10, Issue:11

    Bion 50 WG (Benzothiodiazole), Tilt-250 EC (Propiconazole) and Amistar (Azoxystrobin) either alone and some of their combinations were evaluated against leaf blight/spot (Bipolaris sorokiniana) development and yield of wheat. All the treatments significantly reduced leaf spot reaction of wheat over untreated control. But Bion in combination with Amistar resulted significantly highest reduction of leaf spot reaction of wheat (p = 0.05) against all the tested pathotypes inoculated at flag leaf stage. In the field, Bion reduced leaf spot severity at heading and flowering stage in 2000-2001 and at hard dough stage in 2001-2002. Number of grains/ear not significantly increased by treating seeds with Bion though 1000-grain weight is significantly increased (p = 0.05) in 2000-2001 by Bion. Statistically higher grain yield was obtained from the experimental plot by treating seeds with Bion and Amistar. Bion resulted 53.33% higher grain yield in compare to untreated control.

    Topics: Ascomycota; Fungicides, Industrial; Methacrylates; Pyrimidines; Strobilurins; Thiadiazoles; Triazoles; Triticum

2007
Cloning and expression analysis of the ATP-binding cassette transporter gene MFABC1 and the alternative oxidase gene MfAOX1 from Monilinia fructicola.
    Pest management science, 2003, Volume: 59, Issue:10

    Brown rot, caused by Moniliniafructicola (G Wint) Honey, is a serious disease of peach in all commercial peach production areas in the USA, including South Carolina where it has been primarily controlled by pre-harvest application of 14-alpha demethylation (DMI) fungicides for more than 15 years. Recently, the Qo fungicide azoxystrobin was registered for brown rot control and is currently being investigated for its potential as a DMI fungicide rotation partner because of its different mode of action. In an effort to investigate molecular mechanisms of DMI and Qo fungicide resistance in M fructicola, the ABC transporter gene MfABC1 and the alternative oxidase gene MfAOX1 were cloned to study their potential role in conferring fungicide resistance. The MfABC1 gene was 4380 bp in length and contained one intron of 71 bp. The gene revealed high amino acid homologies with atrB from Aspergillus nidulans (Eidam) Winter, an ABC transporter conferring resistance to many fungicides, including DMI fungicides. MfABC1 gene expression was induced after myclobutanil and propiconazole treatment in isolates with low sensitivity to the same fungicides, and in an isolate with high sensitivity to propiconazole. The results suggest that the MfABC1 gene may be a DMI fungicide resistance determinant in M fructicola. The alternative oxidase gene MfAOX1 from M fructicola was cloned and gene expression was analyzed. The MfAOX1 gene was 1077 bp in length and contained two introns of 54 and 67 bp. The amino acid sequence was 63.8, 63.8 and 57.7% identical to alternative oxidases from Venturia inaequalis (Cooke) Winter, Aspergillus niger van Teighem and A nidulans, respectively. MfAOX1 expression in some but not all M fructicola isolates was induced in mycelia treated with azoxystrobin. Azoxystrobin at 2 microg ml(-1) significantly induced MfAOX1 expression in isolates with low MfAOX1 constitutive expression levels.

    Topics: Acrylates; Actins; Amino Acid Sequence; Ascomycota; ATP-Binding Cassette Transporters; Cloning, Molecular; DNA, Fungal; Fungal Proteins; Fungicides, Industrial; Gene Expression Regulation, Fungal; Methacrylates; Mitochondrial Proteins; Molecular Sequence Data; Mycelium; Nitriles; Oxidoreductases; Plant Proteins; Pyrimidines; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Spores; Strobilurins; Triazoles

2003
Impact of strobilurins on physiology and yield formation of wheat.
    Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 2002, Volume: 67, Issue:2

    Strobilurin fungicides have a broad spectrum activity against all major foliar pathogens of wheat. In addition to this extraordinary fungicidal activity side-effects have been reported which result in higher yields of cereals, e.g. the reduction of respiration, delayed leaf senescence, activation of nitrogen metabolism as well as increased tolerance against abiotic stress factors. In the vegetation period 2000/2001 field trials were carried out at three sites in North Rhine-Westphalia to study the effects of three strobilurin fungicides on the yield formation of six winter wheat varieties. The strobilurins were applied two times as the commercial products Stratego (trifloxystrobin + propiconazole), Amistar/Pronto Plus (azoxystrobin/spiroxamine + tebuconazole) and Juwel Top (kresoxim-methyl + epoxiconazole + fenpropimorph. Fungicide-treated plants were kept disease-free by an initial azole-application in GS 31 in order to exclude disease effects on physiological parameters relevant to yield formation. Photosynthetic electron transport of strobilurin-treated wheat, was improved as early as at GS 65 compared to azole-treated plants. Differences often increased with growth stage and were closely related to a delay in leaf senescence. A higher photosynthetic activity of strobilurin-treated plants was confirmed by gas exchange and chlorophyll fluorescence measurements under field conditions. The yield benefit of wheat from strobilurin treatments varied from 2% to 9% depending on an improved photosynthetic capacity due to a higher and/or prolonged activity. Neither yield potential nor disease susceptibility of the cultivar had an effect on the height of the extra yield which, in contrast was modified by location and wheat genotype.

    Topics: Acetates; Acrylates; Azoles; Chlorophyll; Epoxy Compounds; Fungicides, Industrial; Germany; Imines; Methacrylates; Morpholines; Phenylacetates; Photosynthesis; Pyrimidines; Strobilurins; Triazoles; Triticum

2002