azoxystrobin has been researched along with fludioxonil* in 11 studies
11 other study(ies) available for azoxystrobin and fludioxonil
Article | Year |
---|---|
In vitro assessment of pesticide residues bioaccessibility in conventionally grown blueberries as affected by complex food matrix.
The aim of this study was to investigate the bioaccessibility of pesticide residues in blueberries (commercial and sample from controlled field trial) from Serbia, involving the presence of a complex food matrix and to assess the potential risk to human health. The presence of nine active substances (azoxystrobin, boscalid, fludioxonil, cyprodinil, pyrimethanil, pyridaben, pyriproxyfen, acetamiprid and thiametoxam) in initial blueberry samples was determined in concentration range from 5.15 μg/kg for thiametoxam to 187 μg/kg for azoxystrobin. Clothianidin, metabolite of thiametoxam, was not detected in any blueberry sample. However, after in vitro digestion, the content of initially detected pesticides residues was significantly decreased or it was below limit of quantification resulting in the total bioaccessibility of about 15%. Azoxystrobin, pyrimethanil and fludioxonil was quantified in digestive juice at concentrations which were about 81%, 37% and 10% less than the inital concentration, respectively. The presence of food matrix during digestion of blueberries even more severely reduced concentration of pesticide residues (total bioaccessibility was about 7%) compared to digestion without the food matrix. Only azoxystrobin was quantified after digestion with food matrix in concentration of 27 μg/kg in sample from controlled field trial and detected in two commercial samples but below the limit of quantification. Furthermore, chronic risk assessment indicated that risk is acceptable for the health of different human subpopulation groups. The current study on pesticides residues, most commonly applied on blueberries, provides for the first time an insight into their bioaccessibility under conditions that mimic physiological environment of human digestive tract. Topics: Blueberry Plants; Dioxoles; Food Contamination; Fruit; Humans; Pesticide Residues; Pyrimidines; Pyrroles; Serbia; Strobilurins | 2020 |
Natamycin, a New Biofungicide for Managing Crown Rot of Strawberry Caused by QoI-Resistant Colletotrichum acutatum.
Anthracnose crown rot of strawberry, caused by Colletotrichum acutatum, is an important disease affecting California nursery and fruit production. Preplant dip treatments of transplants with fludioxonil-cyprodinil or azoxystrobin are industry standards for managing the disease and have been used extensively. Following reports of reduced efficacy of azoxystrobin in the field, high levels of quinone outside inhibitor (QoI) resistance were detected in California isolates of the pathogen. Resistance was associated with the G143A mutation in the cytochrome b gene, similar to a previous report from Florida, and there were no detected fitness penalties in pathogenicity or virulence. Therefore, several alternative fungicides were investigated in laboratory and field studies. Subsequently, the new biofungicide natamycin was identified. Baseline sensitivities of 74 isolates of C. acutatum to natamycin were determined to be unimodal, with a range from 0.526 to 1.996 μg/ml (mean 0.973 μg/ml). Although this toxicity was considerably lower than that of azoxystrobin (using sensitive isolates), fludioxonil, or cyprodinil, dip treatments of transplants with natamycin (at 500 or 1000 mg/liter) were highly effective. Disease severity and plant mortality in field studies with inoculated transplants were reduced to similarly low levels as treatments containing fludioxonil, whereas azoxystrobin failed in inoculations with QoI-resistant isolates of C. acutatum. Fruit yield was also significantly increased by natamycin as compared with the inoculated control. Differences in disease susceptibility were observed among cultivars evaluated, with Monterey and Portola more susceptible than Fronteras. Natamycin has a unique mode of action that is different from other fungicides registered on strawberry and, based on this research, was registered in the United States as a preplant, biofungicide dip treatment of strawberry transplants for management of anthracnose crown rot. Topics: Antifungal Agents; California; Colletotrichum; Dioxoles; Drug Resistance, Fungal; Fragaria; Fruit; Fungicides, Industrial; Mutation; Natamycin; Plant Diseases; Pyrimidines; Pyrroles; Strobilurins | 2018 |
Fungicide Resistance in Botrytis cinerea Populations in California and its Influence on Control of Gray Mold on Stored Mandarin Fruit.
Gray mold caused by Botrytis cinerea is an emerging postharvest disease affecting stored mandarin fruit in California. To develop effective control programs, fungicide sensitivities to four citrus postharvest fungicides were determined. One hundred B. cinerea isolates each in 2015 and 2016 were obtained from decayed fruit collected within packinghouses and tested for resistance to the fungicides. Sensitivity to azoxystrobin was examined based on the point mutation in the cyt b gene using PCR, while resistance to fludioxonil, pyrimethanil, and thiabendazole was examined on fungicide-amended media. For azoxystrobin, 83 and 98% of the isolates were resistant in 2015 and 2016, respectively. For pyrimethanil, 71 and 93% were resistant in 2015 and 2016, respectively. For thiabendazole, 63 and 68% were resistant in 2015 and 2016, respectively. No fludioxonil resistance was detected in both years. Five fungicide-resistant phenotypes were detected, and the most common phenotype was triple resistance to azoxystrobin, pyrimethanil, and thiabendazole, accounting for 59 and 65% in 2015 and 2016, respectively. Of the 200 B. cinerea isolates, 5, 23.5, and 62% were resistant to one, two, or three classes of fungicides, respectively. Inoculation tests were conducted to evaluate if the fungicides at label rates controlled various resistant phenotypes on fruit. Most fungicides failed to control gray mold on mandarin fruit inoculated with the respective fungicide resistant phenotypes. Our results suggest that alternative control methods need to be integrated into existing decay control programs to target this emerging disease on mandarin fruit. Topics: Botrytis; California; Citrus; Dioxoles; Drug Resistance, Fungal; Fruit; Fungicides, Industrial; Phenotype; Plant Diseases; Pyrimidines; Pyrroles; Strobilurins; Thiabendazole | 2018 |
Variation in Fungicide Sensitivity Among Rhizoctonia Isolates Recovered from Potatoes in South Africa.
Rhizoctonia is a major pathogen of potato causing substantial yield losses worldwide. Control of Rhizoctonia diseases is based predominantly on the application of fungicides. However, little is known about the fungicide response variability of different Rhizoctonia anastomosis groups associated with potato diseases in South Africa. A total of 131 Rhizoctonia isolates were obtained from potato growing regions of South Africa from 2012 to 2014 and evaluated for sensitivity to fungicides in vitro and in vivo. The fungicides comprised six chemical formulations and one bio-fungicide representing seven Fungicide Resistance Action Committee groups. All Rhizoctonia anastomosis groups were sensitive to tolclofos-methyl (EC Topics: Aminoimidazole Carboxamide; Dioxoles; Fungicides, Industrial; Hydantoins; Microbial Sensitivity Tests; Phenylurea Compounds; Plant Diseases; Pyrimidines; Pyrroles; Rhizoctonia; Solanum tuberosum; South Africa; Species Specificity; Strobilurins | 2018 |
Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk.
Greenhouse studies were conducted to evaluate the dissipation rate kinetics and estimate the behavior of selected pesticides after washing, peeling, simmering, and canning of tomato expressed as processing factor (PF). Two varieties (Marissa and Harzfeuer) were treated by six fungicides: azoxystrobin, boscalid, chlorothalonil, cyprodinil, fludioxonil, and pyraclostrobin at single and double dose and risk assessment defined as hazard quotient was performed. The QuEChERS method was used for sample preparation followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The dissipation of fungicides approximately fitted to a first-order kinetic model, with half-life values ranging from 2.49 and 2.67 days (cyprodinil) to 5.00 and 5.32 days (chlorothalonil) for Marissa and Harzfeuer variety, respectively. Results from processing studies showed that treatments have significant effects on the removal of the studied fungicides for both varieties. The PFs were generally less than 1 (between 0.01 and 0.90) and did not depend on variety. The dietary exposure assessed based on initial deposits of application at single and double dose on tomatoes and concentration after each process with PF correction showed no concern to consumer health. Our results would be a useful tool for monitoring of fungicides in tomatoes and provide more understanding of residue behavior and risk posed by these fungicides. Topics: Carbamates; Chromatography, Liquid; Dioxoles; Food Contamination; Food Handling; Fungicides, Industrial; Half-Life; Humans; Methacrylates; Nitriles; Pesticide Residues; Pyrazoles; Pyrimidines; Pyrroles; Risk; Risk Assessment; Solanum lycopersicum; Strobilurins; Tandem Mass Spectrometry | 2016 |
Simultaneous Determination of Seven Kinds of Fungicides in Citrus Fruits by Gas Chromatograghy/Mass Spectrometry.
A simple and accurate procedure was developed for the determination of seven fungicides, azoxystrobin (AZO), diphenyl (DP), fludioxonil (FLUDI), imazalil (IMZ), o-phenylphenol (OPP), pyrimethanil (PYRI) and thiabendazole (TBZ), in citrus fruits. The citrus fruit sample was extracted with acetonitrile and cleaned up with a graphite carbon/aminopropyl silanized silica gel solid-phase extraction cartridge using acetonitrile-toluene (3 : 1, v/v) as the eluent. Triphenylene was used as an internal standard (I.S.) at the concentration of 0.5 μg/mL. The sample solution was subjected to GC-MS utilizing the matrix-matched standard solution method. The recoveries of AZO, FLUDI, IMZ, OPP, PYRI and TBZ spiked in domestic citrus fruits (Satsuma mandarin) at the level of 0.01-10.0 μg/g were 72.8-104% and the limits of quantification were 0.01 μg/g. The recoveries of DP spiked in domestic citrus fruits at the level of 0.01-70.0 μg/g were 70.8-80.4% and the limit of quantification was 0.01 μg/g. The proposed method was applied to the determination of fungicides in citrus fruits purchased in various markets. Topics: Biphenyl Compounds; Citrus; Dioxoles; Food Analysis; Fungicides, Industrial; Gas Chromatography-Mass Spectrometry; Imidazoles; Methacrylates; Pyrimidines; Pyrroles; Strobilurins; Thiabendazole | 2016 |
In-package nonthermal plasma degradation of pesticides on fresh produce.
In-package nonthermal plasma (NTP) technology is a novel technology for the decontamination of foods and biological materials. This study presents the first report on the potential of the technology for the degradation of pesticide residues on fresh produce. A cocktail of pesticides, namely azoxystrobin, cyprodinil, fludioxonil and pyriproxyfen was tested on strawberries. The concentrations of these pesticides were monitored in priori and post-plasma treatment using GC-MS/MS. An applied voltage and time dependent degradation of the pesticides was observed for treatment voltages of 60, 70 and 80 kV and treatment durations ranging from 1 to 5 min, followed by 24h in-pack storage. The electrical characterisation revealed the operation of the discharge in a stable filamentary regime. The discharge was found to generate reactive oxygen and excited nitrogen species as observed by optical emission spectroscopy. Topics: Dioxoles; Electrochemical Techniques; Food Contamination; Fragaria; Fruit; Fungicides, Industrial; Gas Chromatography-Mass Spectrometry; Methacrylates; Ozone; Pesticide Residues; Pyridines; Pyrimidines; Pyrroles; Strobilurins; Tandem Mass Spectrometry | 2014 |
The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community.
Biopurification systems (BPS) have been introduced to minimise the risk for point source contamination of natural water resources by pesticides. Their depuration efficiency relies mostly on the high biodegradation of their packing substrate (biomixture). Despite that, little is known regarding the interactions between biomixture microflora and pesticides, especially fungicides which are expected to have a higher impact on the microbial community. This study reports the dissipation of the fungicides azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC), commonly used in vineyards, in a biomixture composed of pruning residues and straw used in vineyard BPS. The impact of fungicides on the microbial community was also studied via microbial biomass carbon, basal respiration and phospholipid fatty acid analysis. AZX dissipated faster (t1/2 = 30.1 days) than PC (t1/2 = 99.0 days) and FL (t1/2 = 115.5 days). Fungicides differently affected the microbial community. PC showed the highest adverse effect on both the size and the activity of the biomixture microflora. A significant change in the structure of the microbial community was noted for PC and FL, and it was attributed to a rapid inhibition of the fungal fraction while bacteria showed a delayed response which was attributed to indirect effects by the late proliferation of fungi. All effects observed were transitory and a full recovery of microbial indices was observed 60 days post-application. Overall, no clear link between pesticide persistence and microbial responses was observed stressing the complex nature of interactions between pesticides in microflora in BPS. Topics: Analysis of Variance; Biodegradation, Environmental; Chromatography, High Pressure Liquid; Dioxoles; Environmental Restoration and Remediation; Fungicides, Industrial; Gas Chromatography-Mass Spectrometry; Half-Life; Methacrylates; Microbial Consortia; Multivariate Analysis; Plant Components, Aerial; Principal Component Analysis; Pyrimidines; Pyrroles; Solid Phase Extraction; Strobilurins; Triazoles; Vitis | 2013 |
Solarization and biosolarization enhance fungicide dissipation in the soil.
Although there is some evidence regarding the effect of solarization and biosolarization on pesticide degradation, information is still scarce. The aim of this study was to determine the effect of these disinfection techniques on the degradation of eight fungicides (azoxystrobin, kresoxin methyl, tebuconazole, hexaconazole, triadimenol, cyprodinil, pyrimethanil and fludioxonil) commonly used in pepper crops under greenhouse cultivation. Seventy-five 17-L pots filled with clay-loam soil were placed in a greenhouse during the summer season and then contaminated with the studied fungicides. Treatments consisted of different disinfection treatments, including a control without disinfection, solarization and biosolarization. For the solarization and biosolarization treatments, low-density polyethylene film was used as cover. Five pots per treatment were sampled periodically up to 90d after the beginning of each treatment and fungicide residues were analyzed by GC/MS. The results showed that both solarization and biosolarization enhanced fungicide dissipation rates with regard to the control treatment, an effect which was attributed to the increased soil temperature. Most of the fungicides studied showed similar behavior under solarization and biosolarization conditions. However, triadimenol was degraded to a greater extent in the biosolarization than in the solarization treatment, while fludioxonil behaved in the opposite way. The results confirm that both solarization and biosolarization contribute to pesticide dissipation and can therefore be considered alongside other soil disinfection techniques, as a bioremediation tool for pesticide-polluted soils. Topics: Dioxoles; Environmental Restoration and Remediation; Fungicides, Industrial; Hot Temperature; Methacrylates; Phenylacetates; Photochemical Processes; Pyrimidines; Pyrroles; Soil; Soil Pollutants; Strobilurins; Triazoles | 2010 |
Determination of natural resistance frequencies in Penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates.
ABSTRACT Fungicide resistance was identified in natural populations of Penicillium digitatum, the causal agent of green mold of citrus, to two of three new postharvest fungicides before their commercial use. Using a new air-sampling method where large populations of the pathogen in citrus packinghouses were exposed to agar plates with a continuous, wide-range fungicide concentration gradient, isolates with reduced sensitivity to fludioxonil or pyrimethanil were obtained. Resistance frequencies to fludioxonil and pyrimethanil were calculated as 9.5 x 10(-7) to 1.5 x 10(-5) and 7.3 x 10(-6) to 6.2 x 10(-5), respectively. No isolates resistant to azoxystrobin were detected. Isolates with reduced sensitivity to fludioxonil or pyrimethanil were also obtained in laboratory selection studies, where high concentrations of conidial mixtures of isolates sensitive to the three fungicides were plated onto agar amended with each fungicide at 10 microg/ml. Isolates obtained from fludioxonil selection plates in laboratory and packinghouse experiments were placed into two categories based on mycelial growth: moderately resistant isolates had 50% effective concentration (EC(50)) values of 0.1 to 0.82 microg/ml and highly resistant isolates had EC(50) values > 1.5 microg/ml. Isolates resistant to pyrimethanil all had EC(50) values >8 microg/ml. Representative isolates of the two categories with reduced sensitivity to fludioxonil varied widely in their virulence and sporulation capacity as measured by the incidence of decay and degree of sporulation on inoculated fruit, respectively, whereas pyrimethanil-resistant isolates were mostly similar to the wild-type isolate. Fungicide sensitivity characteristics for isolates from fludioxonil and pyrimethanil selection plates remained stable after passages on nonamended agar, and disease could not be controlled after treatment with the respective fungicides. Types of fungicide resistance were visualized on thiabendazole- (TBZ) and imazalil-amended selection plates that were exposed in packinghouses where resistance to these fungicides was known to occur. The qualitative, single-site resistance to the benzimidazole TBZ was visualized by two distinct subpopulations in regard to fungicide sensitivity, whereas the quantitative, multi-site resistance to the demethylation inhibitor imazalil was apparent as a continuous density gradient of colonies along the fungicide concentration gradient. Types of resistance could not be assigned to fl Topics: Air Microbiology; Citrus; Dioxoles; Drug Resistance, Multiple, Fungal; Fungicides, Industrial; Methacrylates; Penicillium; Pyrimidines; Pyrroles; Selection, Genetic; Strobilurins | 2010 |
Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in a greenhouse.
The disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in greenhouse was studied. At the preharvest interval, except for cyprodinil, the pesticide residues were below the MRL fixed in Italy. The mechanism of disappearance studied with model systems shows that the decrease in residues was due to codistillation and photodegradation in pyrimethanil, to photodegradation in fludioxonil, and to evaporation and codistillation in cyprodinil. Azoxystrobin residues were stable during all experiments. Topics: Acrylates; Agriculture; Dioxoles; Fungicides, Industrial; Methacrylates; Pesticide Residues; Photochemistry; Pyrimidines; Pyrroles; Solanum lycopersicum; Strobilurins; Sunlight | 2002 |