azoxystrobin and enilconazole

azoxystrobin has been researched along with enilconazole* in 2 studies

Other Studies

2 other study(ies) available for azoxystrobin and enilconazole

ArticleYear
Simultaneous Determination of Seven Kinds of Fungicides in Citrus Fruits by Gas Chromatograghy/Mass Spectrometry.
    Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan, 2016, Volume: 57, Issue:4

    A simple and accurate procedure was developed for the determination of seven fungicides, azoxystrobin (AZO), diphenyl (DP), fludioxonil (FLUDI), imazalil (IMZ), o-phenylphenol (OPP), pyrimethanil (PYRI) and thiabendazole (TBZ), in citrus fruits. The citrus fruit sample was extracted with acetonitrile and cleaned up with a graphite carbon/aminopropyl silanized silica gel solid-phase extraction cartridge using acetonitrile-toluene (3 : 1, v/v) as the eluent. Triphenylene was used as an internal standard (I.S.) at the concentration of 0.5 μg/mL. The sample solution was subjected to GC-MS utilizing the matrix-matched standard solution method. The recoveries of AZO, FLUDI, IMZ, OPP, PYRI and TBZ spiked in domestic citrus fruits (Satsuma mandarin) at the level of 0.01-10.0 μg/g were 72.8-104% and the limits of quantification were 0.01 μg/g. The recoveries of DP spiked in domestic citrus fruits at the level of 0.01-70.0 μg/g were 70.8-80.4% and the limit of quantification was 0.01 μg/g. The proposed method was applied to the determination of fungicides in citrus fruits purchased in various markets.

    Topics: Biphenyl Compounds; Citrus; Dioxoles; Food Analysis; Fungicides, Industrial; Gas Chromatography-Mass Spectrometry; Imidazoles; Methacrylates; Pyrimidines; Pyrroles; Strobilurins; Thiabendazole

2016
EFFICACY OF FUNGICIDES AGAINST CALONECTRIA PAUCIRAMOSA IN POT AZALEA.
    Communications in agricultural and applied biological sciences, 2015, Volume: 80, Issue:3

    Calonectria (formerly Cylindrocladium) infection of pot azalea (Rhododendron simsii Planch) is an important disease problem in which usually one or two of the four plants per pot show progressing leaf and especially stem lesions, leading to mortality of the respective plant and rendering the pot unmarketable. This may occur in a later stage of the growing season, leading to significant commercial losses. The main objective of this study was to test a range of fungicides for their efficacy against this pathogen. To test the fungicides, a bioassay was first developed in which mycelium and conidiospores of the pathogen were produced on Potato Dextrose Agar, blended in water, and dilutions of the resulting suspension inoculated at the base of 11-week-old cuttings three weeks after they had been trimmed. Disease progression was monitored up to 7 weeks post inoculation and a disease index on a scale of 0 to 3 was established. In the actual efficacy trial, the following fungicides (with corresponding active ingredient(s)) were tested as preventive treatments: Topsin M 70 WG (thiophanate-methyl), Sporgon (prochloraz), Signum (boscalid+pyraclostrobin), Switch (cyprodinyl+fludioxonil), Flint 50WG (trifloxystrobin), Ortiva Top (azoxystrobin+difenoconazole) and Fungaflor (imazalil). Disease expression started after about 2 weeks, increased approximately 1 index level, and leveled off 5 weeks after inoculation. The best control was observed with Sporgon, Ortiva Top and Signum. Switch produced intermediate effects and insufficient control was observed with Topsin, Flint and Fungaflor. These results explain why specific standard fungicide treatments, such as those with Topsin, fail to control the disease, while they can be effective against a different Calonectria species such as C. pseudonaviculata, the cause of boxwood blight.

    Topics: Acetates; Carbamates; Dioxolanes; Fungicides, Industrial; Hypocreales; Imidazoles; Imines; Methacrylates; Plant Diseases; Pyrazoles; Pyrimidines; Rhododendron; Strobilurins; Triazoles

2015