Page last updated: 2024-08-23

azoxymethane and s-adenosylhomocysteine

azoxymethane has been researched along with s-adenosylhomocysteine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (33.33)29.6817
2010's2 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bozinov, D; Callaway, ES; Chapkin, RS; Davidson, LA; Finnell, RH; James, J; Kappen, C; Lupton, JR; Ma, DW; Piedrahita, JA; Salbaum, JM; Spiegelstein, O; Weeks, BR1
Lin, DM; MacFarlane, AJ; McEntee, MF; Perry, CA; Stover, PJ1
Li, TW; Lu, SC; Mato, JM; Peng, H; Xia, M; Yang, H1

Other Studies

3 other study(ies) available for azoxymethane and s-adenosylhomocysteine

ArticleYear
Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis.
    Cancer research, 2005, Feb-01, Volume: 65, Issue:3

    Topics: Animals; Azoxymethane; Carcinogens; Carrier Proteins; Cell Cycle; Cell Transformation, Neoplastic; Colon; Colonic Neoplasms; Folate Receptors, GPI-Anchored; Gene Expression Profiling; Gene Silencing; Genetic Predisposition to Disease; Kidney; Male; Membrane Transport Modulators; Membrane Transport Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Oligonucleotide Array Sequence Analysis; Precancerous Conditions; Receptors, Cell Surface; Reduced Folate Carrier Protein; Reverse Transcriptase Polymerase Chain Reaction; S-Adenosylhomocysteine; S-Adenosylmethionine

2005
Mthfd1 is a modifier of chemically induced intestinal carcinogenesis.
    Carcinogenesis, 2011, Volume: 32, Issue:3

    Topics: Aminohydrolases; Animals; Apoptosis; Azoxymethane; Biomarkers, Tumor; Blotting, Western; Carcinogens; Cell Proliferation; Colonic Neoplasms; Disease Models, Animal; DNA, Neoplasm; Female; Formate-Tetrahydrofolate Ligase; Gene Expression Profiling; Immunoenzyme Techniques; Male; Methenyltetrahydrofolate Cyclohydrolase; Methylenetetrahydrofolate Dehydrogenase (NADP); Mice; Mice, Inbred C57BL; Mice, Knockout; Multienzyme Complexes; Multifunctional Enzymes; Oligonucleotide Array Sequence Analysis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; S-Adenosylhomocysteine; S-Adenosylmethionine; Uracil

2011
Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice.
    Carcinogenesis, 2012, Volume: 33, Issue:2

    Topics: Animals; Apoptosis; Azoxymethane; beta Catenin; Cell Proliferation; Cell Transformation, Neoplastic; Chemoprevention; Colonic Neoplasms; Dextran Sulfate; Inflammation; Interleukin-10; Interleukin-6; Male; Mice; Mice, Inbred BALB C; NF-kappa B; Nitric Oxide Synthase Type II; Proto-Oncogene Proteins c-akt; Purine-Nucleoside Phosphorylase; S-Adenosylhomocysteine; S-Adenosylmethionine; Signal Transduction; STAT3 Transcription Factor; Transcriptional Activation; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

2012