azoxymethane has been researched along with pyrroles in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Khor, TO; Kong, AN; Kopelovich, L; Rao, CV; Reddy, BS; Steele, VE; Wang, CX; Zheng, X | 1 |
Andraos, R; Cheong, R; Feinberg, AP; Iacobuzio-Donahue, CA; Kaneda, A; Ko, MS; Levchenko, A; Longo, DL; Ohlsson, R; Onyango, P; Pearson, MA; Sharov, AA; Timp, W; Wang, CJ; Wen, B | 1 |
DeCastro, A; Janakiram, NB; Lee, HJ; Paul, S; Rao, CV; Reddy, BS; Simi, B; Smolarek, AK; So, JY; Steele, V; Suh, N; Wang, CX | 1 |
Guan, F; Ju, J; Li, G; Liu, AB; Sun, Y; Yang, CS; Yang, Z | 1 |
Brahmaroutu, A; DeMorrow, S; Frampton, G; Grant, S; Jefferson, B; McMillin, M; Petrescu, AD; Thomas, A; Williams, E | 1 |
5 other study(ies) available for azoxymethane and pyrroles
Article | Year |
---|---|
Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats.
Topics: Animals; Anticarcinogenic Agents; Apoptosis; Aspirin; Atorvastatin; Azoxymethane; Carcinogens; Celecoxib; Cell Growth Processes; Colonic Neoplasms; Dose-Response Relationship, Drug; Heptanoic Acids; Male; Pyrazoles; Pyrroles; Rats; Rats, Inbred F344; Sulfonamides | 2006 |
Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk.
Topics: Animals; Anticarcinogenic Agents; Azoxymethane; Cell Proliferation; DNA Methylation; Epigenesis, Genetic; Gene Expression Regulation, Neoplastic; Genomic Imprinting; Insulin-Like Growth Factor II; Mice; Mice, Inbred C57BL; Neoplasms; Oligonucleotide Array Sequence Analysis; Pyrimidines; Pyrroles; Signal Transduction | 2007 |
Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats.
Topics: Adenocarcinoma; Animals; Anti-Inflammatory Agents, Non-Steroidal; Anticholesteremic Agents; Antineoplastic Combined Chemotherapy Protocols; Atorvastatin; Azoxymethane; beta Catenin; Carcinogens; Colonic Neoplasms; Cyclin D1; eIF-2 Kinase; Enzyme-Linked Immunosorbent Assay; Heptanoic Acids; Immunoenzyme Techniques; Interleukin-4; Male; Naproxen; Nitric Oxide Synthase Type II; Pyrroles; Rats; Rats, Inbred F344; Signal Transduction; Sulindac; Tumor Necrosis Factor-alpha | 2011 |
Deleterious effects of high concentrations of (-)-epigallocatechin-3-gallate and atorvastatin in mice with colon inflammation.
Topics: Animals; Atorvastatin; Azoxymethane; Catechin; Colitis; Colon; Colonic Neoplasms; Dextran Sulfate; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Gastrointestinal Hemorrhage; Heptanoic Acids; Leukotriene B4; Mice; Mice, Inbred C57BL; Mice, Inbred Strains; Pyrroles; Rectum; Weight Loss | 2012 |
Elevated circulating TGFβ1 during acute liver failure activates TGFβR2 on cortical neurons and exacerbates neuroinflammation and hepatic encephalopathy in mice.
Topics: Animals; Antibodies; Azoxymethane; Benzamides; Carcinogens; Cell Line, Transformed; Cerebral Cortex; Disease Models, Animal; Hepatic Encephalopathy; Inflammation; Isoquinolines; Liver; Liver Failure, Acute; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Neurons; Phagocytosis; Pyrazoles; Pyridines; Pyrroles; Receptor, Transforming Growth Factor-beta Type II; Signal Transduction; Transforming Growth Factor beta1; Up-Regulation | 2019 |