azaspiracid and acetonitrile

azaspiracid has been researched along with acetonitrile* in 2 studies

Other Studies

2 other study(ies) available for azaspiracid and acetonitrile

ArticleYear
New method for the analysis of lipophilic marine biotoxins in fresh and canned bivalves by liquid chromatography coupled to high resolution mass spectrometry: a quick, easy, cheap, efficient, rugged, safe approach.
    Journal of chromatography. A, 2015, Mar-20, Volume: 1386

    A new method for the analysis of lipophilic marine biotoxins (okadaic acid, dinophysistoxins, azaspiracids, pectenotoxins, yessotoxins, spirolids) in fresh and canned bivalves has been developed. A QuEChERS methodology is applied; i.e. the analytes are extracted with acetonitrile and clean-up of the extracts is performed by dispersive solid phase extraction with C18. The extracts are analyzed by ultra-high performance liquid chromatography coupled to a hybrid quadrupole-Orbitrap mass spectrometer, operating in tandem mass spectrometry mode, with resolution set at 70,000 (m/z 200, FWHM). Separation of the analytes, which takes about 10min, is carried out in gradient elution mode with a BEH C18 column and mobile phases based on 6.7mM ammonia aqueous solution and acetonitrile mixtures. For each analyte the molecular ion and 1 or 2 product ions are acquired, with a mass accuracy better than 5ppm. The quantification is performed using surrogate matrix matched standards, with eprinomectin as internal standard. The high-throughput method, which has been successfully validated, fulfills the requirements of European Union legislation, and has been implemented as a routine method in a public health laboratory.

    Topics: Acetonitriles; Ammonia; Animals; Bivalvia; Chromatography, High Pressure Liquid; Food Analysis; Marine Toxins; Mollusk Venoms; Okadaic Acid; Oxocins; Solid Phase Extraction; Spiro Compounds; Tandem Mass Spectrometry

2015
Quantitative analysis of azaspiracids in Azadinium spinosum cultures.
    Analytical and bioanalytical chemistry, 2012, Volume: 403, Issue:3

    Azaspiracids (AZAs) are secondary metabolites of Azadinium spinosum that can accumulate in shellfish and cause food poisoning when consumed. We describe here an analytical procedure for the determination of AZAs in cultures of A. spinosum with a focus on the formation of AZA methyl esters as artefacts during extraction and sample pre-treatment. A. spinosum cells were collected from bioreactor cultures using centrifugation or filtration. Different extraction procedures were evaluated for formation of methyl ester artefacts, yield, and matrix effects. Filtration of cultures using glass-fibre filters led to increased formation of methyl esters, and centrifugation is recommended for recovery of cells. The extraction solvent (methanol (MeOH), acetone, and acetonitrile (MeCN)) did not significantly affect the yield of AZAs as long as the organic content was 80% or higher. However, the use of MeOH as extraction solvent led to increased formation of methyl esters. AZA1 recovery over two successive extractions was 100% at the 95% confidence level for acetone and MeOH. In standard-addition experiments, no significant matrix effects were observed in extracts of A. spinosum or Azadinium obesum up to a sample size of 4.5 × 10(9) μm(3). Moreover, experiments carried out to clarify the formation and structure of methylated AZA analogues led to the description of two AZA methyl esters and to the correction of the chemical structures of AZAs29-32.

    Topics: Acetone; Acetonitriles; Animals; Chromatography, High Pressure Liquid; Dinoflagellida; Marine Toxins; Solvents; Spiro Compounds; Tandem Mass Spectrometry

2012