azadiradione has been researched along with gedunin* in 3 studies
3 other study(ies) available for azadiradione and gedunin
Article | Year |
---|---|
Gedunin and Azadiradione: Human Pancreatic Alpha-Amylase Inhibiting Limonoids from Neem (Azadirachta indica) as Anti-Diabetic Agents.
Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (Ki 42.2, 18.6 μM) and starch (Ki' 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia. Topics: alpha-Amylases; Animals; Azadirachta; Cell Line; Diabetes Mellitus; Glycoside Hydrolase Inhibitors; Humans; Hypoglycemic Agents; Limonins; Models, Molecular; Molecular Docking Simulation; Plant Extracts; Rats | 2015 |
Cytotoxic and apoptosis-inducing activities of limonoids from the seeds of Azadirachta indica (neem).
Thirty-five limonoids, including 15 of the azadiradione type (1-15), five of the gedunin type (16-20), four of the azadirachtin type (21-24), nine of the nimbin type (25-33), and two degraded limonoids (34, 35), isolated from Azadirachta indica seed extracts, were evaluated for their cytotoxic activities against five human cancer cell lines. Seven compounds (3, 6, 7, 16, 18, 28, and 29) exhibited cytotoxic activity against one or more cell lines. Among these compounds, 7-deacetyl-7-benzoylepoxyazadiradione (7), 7-deacetyl-7-benzoylgeduin (18), and 28-deoxonimbolide (28) exhibited potent cytotoxic activity against HL60 leukemia cells with IC(50) values in the range 2.7-3.1 μM. Compounds 7, 18, and 28 induced early apoptosis in HL60 cells, observed by flow cytometry. Western blot analysis showed that compounds 7, 18, and 28 activated caspases-3, -8, and -9 in HL60 cells. This suggested that compounds 7, 18, and 28 induced apoptotic cell death in HL60 cells via both the mitochondrial- and the death receptor-mediated pathways. Futhermore, compound 7 was shown to possess high selective cytotoxicity for leukemia cells since it exhibited only weak cytotoxicity against a normal lymphocyte cell line (RPMI 1788). Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Azadirachta; Drug Screening Assays, Antitumor; HL-60 Cells; Humans; Limonins; Lymphocytes; Mitochondria; Molecular Structure; Receptors, Death Domain; Seeds | 2011 |
Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica.
Eight known and two new triterpenoid derivatives, neemfruitins A (9) and B (10), have been isolated from the fruits of neem, Azadirachta indica, a traditional antimalarial plant used by Asian and African populations. In vitro antiplasmodial tests evidenced a significant activity of the known gedunin and azadirone and the new neemfruitin A and provided useful information about the structure-antimalarial activity relationships in the limonoid class. Topics: Antimalarials; Azadirachta; Burkina Faso; Fruit; Limonins; Plants, Medicinal; Structure-Activity Relationship; Triterpenes | 2010 |