azadirachtin has been researched along with imidacloprid* in 15 studies
15 other study(ies) available for azadirachtin and imidacloprid
Article | Year |
---|---|
Sublethal effects of nine insecticides on Drosophila suzukii and its major pupal parasitoid Trichopria drosophilae.
Although the pupal parasitoid Trichopria drosophilae is used in conservative and augmentative biocontrol of Drosophila suzukii infestations, current pest management strategies mostly rely on multiple insecticide applications. In this context, the aim of the study was to investigate the baseline toxicity of nine insecticides on D. suzukii larvae and their multiple sublethal effects (LC. Chlorpyriphos and azadirachtin showed the lowest and the highest LC. This study provides new insights on the (eco)toxicological profile of nine insecticides and new information needed to support the deployment of T. drosophilae in the field within the sustainable management techniques against D. suzukii. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Topics: Animals; Dimethoate; Drosophila; Female; Hymenoptera; Insecticides; Malathion; Pupa | 2023 |
Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil.
The extensive use of insecticides can cause adverse side effects on pollinators, which negatively impact crop productivity. The pollination carried out by the honeybee Apis mellifera L. (Hymenoptera: Apidae) is crucial in increasing the productivity of the melon (Cucumis melo L.). The main objective of this study was to assess if insecticides applied in the cultivation of cantaloupe melon exhibit significant levels of toxicity toward A. mellifera. We tested the toxicity of azadirachtin, pyriproxyfen, chlorantraniliprole, and imidacloprid, which are commonly sprayed to manage melon pests such as the whitefly Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae), the pickleworm Diaphania nitidalis (Stoll) and the melonworm Diaphania hyalinata (L.) (Lepidoptera: Pyralidae). Three treatments were carried out, 0.0×, 0.1x and 1.0x the concentration recommended by the manufacturer for the control of those pests. Repellency tests, analysis of mortality through contact and ingestion, and flight tests were performed. The insecticide imidacloprid caused mortality rates above 90% in all tested exposure pathways, displaying high residue persistence on plants. Although not causing significant mortality in the ingestion test, pyriproxyfen caused significant mortality after exposure through contact, and change in flight ability. Azadirachtin caused mortality in the ingestion test and impaired the flight ability of bees, while chlorantraniliprole only impaired the flight ability. Moreover, bees were not repelled by these insecticides, suggesting that they may collect contaminated food in the field while foraging. Altogether, ecofriendly, alternative pest control options should be developed, as well as the adoption of more selective insecticides, in order to reduce the non-target effects on honeybees and guarantee their pollination services. Topics: Animals; Bees; Brazil; Cucurbitaceae; Flight, Animal; Insecticides; Lepidoptera; Limonins; Neonicotinoids; Nitro Compounds; Pest Control; Pollination; Pyridines | 2020 |
Lethal and Sublethal Toxicity of Insecticides to the Lacewing Ceraeochrysa Cubana.
The lethal and sublethal effects of 11 insecticides on the predator Ceraeochrysa cubana (Hagen) were assessed under laboratory conditions. First-instar larvae and adults ≤ 48 h old were sprayed with the highest insecticides doses allowed to control Diaphorina citri Kuwayama in the citrus crop. The survival and duration rates of the different development stages, sex ratio, pre-oviposition period, fecundity, and fertility of the insects were evaluated. In the larval bioassay, chlorpyrifos and malathion had lethal effect which none larvae survived. Azadirachtin, lambda-cyhalothrin + chlorantraniliprole, lambda-cyhalothrin + thiamethoxam, and thiamethoxam had lethal and sublethal effects that did not allow to estimate the life table parameters because the low number of couples formed. Esfenvalerate, imidacloprid WG and SC, phosmet, and pyriproxyfen had sublethal effects which were reflected in the net reproductive rate and in the intrinsic rate of natural increase. In bioassay using adults, none of the individuals survived in the chlorpyrifos, lambda-cyhalothrin + chlorantraniliprole, lambda-cyhalothrin + thiamethoxam, malathion, or thiamethoxam treatments, and the azadirachtin, esfenvalerate, imidacloprid WG and SC, phosmet, and pyriproxyfen treatments were significantly lower compared to the control. None of the insecticides was harmless to first-instar larvae and adults of C. cubana under laboratory conditions showing their potential to reduce the efficiency of this predator. Topics: Animals; Chlorpyrifos; Hemiptera; Insecticides; Larva; Limonins; Malathion; Neonicotinoids; Nitriles; Nitro Compounds; Pyrethrins; Pyridines; Random Allocation; Thiamethoxam; Toxicity Tests | 2019 |
Bio-pesticide applications may impair the pollination services and survival of foragers of honey bee, Apis cerana Fabricius in oilseed brassica.
Topics: Animals; Bacillus thuringiensis; Bees; Drug Combinations; Insecticides; Lethal Dose 50; Limonins; Macrolides; Metarhizium; Mustard Plant; Neonicotinoids; Nitro Compounds; Pollination | 2019 |
Field evaluation of synthetic and neem-derived alternative insecticides in developing action thresholds against cauliflower pests.
Synthetic chemical pesticides can enhance crop yields but also have undesired effects. Alternative 'botanical insecticides' may also have non-target effects on pollinators and biocontrol services. Employing action thresholds (ATs) can reduce pesticide (whether synthetic or botanical) use compared to fixed-interval applications. Here the azadirachtin-based botanical formulation NeemAzal and a neem seed extract (NSE) were evaluated in field spraying trials alongside commonly-used synthetics (Voliam Flexi [chlorentraniliprole plus thiamethoxam] and imidacloprid) in developing ATs for the regular and cosmopolitan cauliflower pests Brevicoryne brassicae, Plutella xylostella and Spodoptera litura. We considered the size of the S. litura larvae infesting the crop in order to derive ATs. ATs per plant were higher for NeemAzal (0.55 larvae for P. xylostella and 3 larvae for large-sized S. litura) than for Voliam Flexi (0.30 larvae for P. xylostella and 0.80 larvae for S. litura) but were similar for B. brassicae (50 individuals). Higher ATs when using azadirachtin were associated with the diverse modes of action of botanicals, for instance NeemAzal and NSE deterred oviposition of S. litura. Although the exact values of ATs are likely to have regional limits, our approach can be applied for determining ATs against common lepidopteran and aphid pests in many other vegetable crop agro-ecosystems. Topics: Animals; Aphids; Brassica; Dose-Response Relationship, Drug; Glycerides; India; Insecticides; Larva; Limonins; Moths; Neonicotinoids; Nitro Compounds; Ovum; Seasons; Species Specificity; Terpenes; Thiamethoxam | 2019 |
The impact of six insecticides commonly used in control of agricultural pests on the generalist predator Hippodamia convergens (Coleoptera: Coccinellidae).
Hippodamia convergens is an important predator found in different agroecosystems. We evaluated the impacts of six insecticides on eggs, larvae and adults of this predator. For eggs, all insecticides reduced larval hatching rates, but did not affect egg duration. Chlorpyrifos and phosmet reduced larval survival; and chlorpyrifos, etofenprox and phosmet prolonged the larva development time. The survival and duration of pupae were not affected by all insecticides tested. Chlorpyrifos reduced fecundity, fertility and longevity when eggs were sprayed. For first-instar larvae, chlorpyrifos, etofenprox, phosmet and imidacloprid caused 100% mortality, while azadirachtin and thiamethoxam caused 35.0 and 52.7% mortality, respectively. However, azadirachtin and thiamethoxam did not affect the other biological parameters of the predator. In adults, chlorpyrifos, etofenprox and phosmet reduced adult survival. Chlorpyrifos, etofenprox, and phosmet reduced fecundity and longevity, but did not affect fertility. Azadirachtin, imidacloprid and thiamethoxam did not affect fecundity, fertility or longevity. Based on demographic parameters, all insecticides reduced the net reproductive rate (R Topics: Animals; Chlorpyrifos; Coleoptera; Imidazoles; Insecticides; Larva; Limonins; Neonicotinoids; Nitro Compounds; Oxazines; Pest Control; Phosmet; Pupa; Pyrethrins; Thiamethoxam; Thiazoles; Toxicity Tests | 2017 |
Lethal and Sublethal Effects of Insecticides on the Egg Parasitoid Telenomus podisi (Hymenoptera: Platygastridae).
Insecticide use remains controversial, and subjected to increasing environmental and health concerns, even when recent insecticide groups are considered. Neonicotinoids and even bioinsecticides are in the forefront of discussions regarding their nontarget safety. The ubiquitous focus on the lethal effects of insecticides on nontarget species has been expanding to sublethal effects, as sublethal exposure extends for a longer time and affects a broader range of (nontarget) species. Here we explored the lethal and sublethal effects of a lambda-cyhalothrin + thiamethoxan mixture, the neonicotinoid imidacloprid, and the bioinsecticide azadirachtin on the egg parasitoid Telenomus podisi Ashmead, an important parasitoid of stink bug Euschistus heros (F.), a key soybean pest in neotropical America. Contact with dry insecticide residue on glass surface and (parasitized and healthy) host egg immersion exposure bioassays were performed, assessing their acute lethal effects, and their potential sublethal impairment of parasitism, adult emergence, and fertility of the egg parasitoid. Both imidacloprid and the insecticide mixture exhibited high acute lethal activity toward the parasitoid under contact with dry insecticide residue. These insecticides compromised parasitism and wasp emergence when exposure took place before parasitism. In contrast, azadirachtin did not affect adult survival. However, this bioinsecticide compromised parasitism and progeny production, impairing the female parasitoid reproductive potential. Our results indicate strong negative effects of imidacloprid, and specially of the mixture lambda-cyhalthrin + thiamethoxan. However, even azadirachtin, which exhibited low acute lethality, exhibited significant negative sublethal effects on parasitism and population growth of egg parasitoid, cautioning against their use and the need of semifield and field assessments to confirm such an impact. Topics: Animals; Female; Heteroptera; Host-Parasite Interactions; Imidazoles; Insecticides; Limonins; Neonicotinoids; Nitriles; Nitro Compounds; Oxazines; Pyrethrins; Thiamethoxam; Thiazoles; Wasps | 2016 |
Non-target effects of commonly used plant protection products in roses on the predatory mite Euseius gallicus Kreiter & Tixier (Acari: Phytoseidae).
Euseius gallicus Kreiter & Tixier (Acari: Phytoseidae) is a predatory mite recently available for use against various pests in roses. We tested in greenhouse trials the impact on the numbers of eggs and motiles of E. gallicus of the most commonly used plant protection products in roses in northern Europe: the acaricides acequinocyl and etoxazole, the insecticides azadirachtin-A, acetamiprid, flonicamid, imidacloprid, indoxacarb, thiacloprid and thiamethoxam and the fungicides boscalid and kresoxim-methyl, cyprodinil + fludioxonil, dodemorph and fluopyram + tebuconazole.. The neonicotinoids thiacloprid, thiamethoxam, acetamiprid and imidacloprid had a negative impact on the number of eggs (47, 62, 81 and 76% reduction, respectively, compared with a water treatment) and number of motiles of E. gallicus (42.2, 42.9, 59.9 and 60.6% reduction) and were classified as slightly to moderately toxic. Also, the number of motiles was reduced after treatment with acequinocyl (47%) and etoxazole (43.9%) and after two treatments with flonicamid (41%) with a 1 week interval between treatments.. Azadirachtin-A, acetamiprid, flonicamid, boscalid and kresoxim-methyl, cyprodinil + fludioxonil, dodemorph and fluopyram + tebuconazole were harmless for E. gallicus. Special attention should be paid to the impact of neonicotinoids and of acequinocyl and etoxazole, and to the application frequency with flonicamid on E. gallicus. © 2015 Society of Chemical Industry. Topics: Acaricides; Acetates; Animals; Fungicides, Industrial; Imidazoles; Limonins; Mites; Naphthalenes; Neonicotinoids; Niacinamide; Nitro Compounds; Oxazines; Oxazoles; Pyridines; Rosa; Thiamethoxam; Thiazines; Thiazoles | 2016 |
Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin.
Resurgence of insect pests following insecticide applications is often attributed to natural enemy disturbance, but hormesis could be an alternative or additional mechanism. Green peach aphid, Myzus persicae (Sulzer), is an important insect pest of many crops worldwide that may be exposed to sublethal insecticide concentrations over time. Here, the hypothesis that exposure to low concentrations of imidacloprid and azadirachtin can induce hormetic responses in M. persicae is tested in the laboratory.. When insects were exposed to potato leaf discs dipped in sublethal concentrations of insecticide, almost all measured endpoints-adult longevity, F1 production, F1 survival and F2 production-were affected, and a statistically significant (P < 0.05) stimulatory response was recorded for F2 production following exposure to imidacloprid. No other measures for hormesis were statistically significant, but other trends of hormetic response were consistently observed.. Given that variable distribution and degradation of insecticides in the field would result in a wide range of concentrations over time and space, these laboratory experiments suggest that exposure to sublethal concentrations of imidacloprid and azadirachtin could stimulate reproduction in M. persicae. Topics: Animals; Aphids; Imidazoles; Insecticides; Limonins; Neonicotinoids; Nitro Compounds; Plant Diseases; Reproduction; Solanum tuberosum | 2009 |
Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet.
An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC(50) of 20.4 microg/ml after 24 h, and of 0.24 microg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7-9 microg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. Topics: Animals; Aphids; Diet; Feeding Behavior; Imidazoles; Insect Control; Insecticides; Juvenile Hormones; Lethal Dose 50; Limonins; Neonicotinoids; Niacinamide; Nitro Compounds; Nymph; Phenylurea Compounds; Pyridines; Triazines | 2009 |
Effects of pesticide applications and cultural controls on efficacy of control for adult Japanese beetles (Coleoptera: Scarabaeidae) on roses.
Cultural and chemical controls were evaluated to determine their ability to deter feeding by Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), on floribunda type roses, Rosa 'Acadia Sunrise'. Roses were arranged in field plots and exposed to resident adult beetle populations. Cultural controls were designed to block the feeding-induced aggregation response by manually removing beetles and/ or damaged blooms from rose plants. Azadirachtin, carbaryl, and imidacloprid were evaluated in field and laboratory trials. In no-choice laboratory assays, foliar applications of azadirachtin caused low rates of morbidity to adult beetles and were unable to deter feeding. Foliar-applied carbaryl and soil-applied imidacloprid caused high rates of morbidity and reduced feeding injury. In the field, foliar sprays of azadirachtin and carbaryl, deterred feeding on foliage under low beetle pressure (maximum of 29% defoliation in untreated controls), when applied weekly after first beetle flight or every 2 wk after 5% injury was reached. A single foliar application of these materials at the 5% injury level did not significantly reduce peak defoliation. Soil applications of imidacloprid also deterred foliar feeding in the field. Blooms were more difficult to protect with both foliar- and soil-applied insecticides with only weekly application of foliar insecticides providing significant reductions in bloom injury. Removing beetles and/or blooms provided marginally greater reductions in leaf and flower injury. This suggests that blocking the feeding-induced aggregation response of Japanese beetles can provide only modest levels of control in roses where both flowers and feeding-induced volatiles recruit beetles to plants. Topics: Animals; Carbaryl; Coleoptera; Imidazoles; Insect Control; Insecticides; Limonins; Neonicotinoids; Nitro Compounds; Rosa; Time Factors | 2007 |
Management of cottonwood leaf beetle (Coleoptera: Chrysomelidae) with a novel transplant soak and biorational insecticides to conserve coccinellid beetles.
Biorational foliar sprays and a novel application method of soaking transplants in imidacloprid were evaluated for control of adult and larval cottonwood leaf beetle, Chrysomela scripta F., on hybrid poplar, with emphasis on conservation of coccinellid predators. Foliar sprays of four biorational insecticides killed adult and larval C. scripta: Bacillus thuringiensis (B.t.) variety tenebrionis (Novodor), B.t. variety kurstaki (Raven), spinosad (Conserve SC), and azadirachtin (Azatin XL) (larvae only) but did not kill two species of coccinellids, Hippodamia convergens Guérin-Meneville and Harmonia axyridis (Pallas). Only imidacloprid (Admire 2) and carbaryl (Sevin XLR Plus) killed two species of coccinellids and adult and larval C. scripta. We evaluated a novel stick soak method for systemically applying imidacloprid by soaking poplar sticks in Admire 2 solutions of 3 and 6 ml/liter for 48 h before planting. The imidacloprid in the sticks was translocated to the leaves and reduced survivorship of adult and larval C. scripta for 10 mo without any symptoms of phytotoxicity. The novel stick soak method did not kill two species of coccinellids when foraging on leaves. Topics: Agriculture; Animals; Bacillus thuringiensis; Carbaryl; Coleoptera; Cordyceps; Drug Combinations; Imidazoles; Insecticides; Limonins; Macrolides; Neonicotinoids; Nitro Compounds; Pest Control, Biological; Populus; Survival Analysis | 2006 |
Laboratory evaluation of the toxicity of systemic insecticides for Control of Anoplophora glabripennis and Plectrodera scalator (Coleoptera: Cerambycidae).
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is one of the most serious nonnative invasive forest insects discovered in North America in recent years. A. glabripennis is regulated by federal quarantines in the United States and Canada and is the subject of eradication programs that involve locating, cutting, and chipping all infested trees. Other control methods are needed to aid in eradication and to form an integrated management program in the event eradication fails. We conducted laboratory bioassays to determine the toxicity of two systemic insecticides, azadirachtin and imidacloprid, for potential control of A. glabripennis and the cottonwood borer, Plectrodera scalator (F.) (Coleoptera: Cerambycidae), a closely related native cerambycid. Larvae of both cerambycid species were fed artificial diet with dilutions of azadirachtin or imidacloprid for 14 wk. Both insecticides exhibited strong antifeedant effects and some toxicity against A. glabripennis and P. scalator larvae. For A. glabripennis, the highest larval mortality at the end of the bioassay was 60% for larvae fed artificial diet treated with azadirachtin (50 ppm) or imidacloprid (1.6 ppm). For P. scalator, the highest larval mortality at the end of the bioassay was 100% for larvae fed artificial diet treated with azadirachtin (50 ppm) or imidacloprid (160 ppm). At 14 wk, the LC50 values for P. scalator were 1.58 and 1.78 ppm for azadirachtin and imidacloprid, respectively. Larvae of both species gained weight when fed diet treated with formulation blanks (inert ingredients) or the water control but lost weight when fed diet treated with increasing concentrations of either azadirachtin or imidacloprid. In a separate experiment, A. glabripennis adults were fed maple twigs treated with high and low concentrations of imidacloprid. A. glabripennis adult mortality reached 100% after 13 d on twigs treated with 150 ppm imidacloprid and after 20 d on twigs treated with 15 ppm imidacloprid. There was no visible feeding by A. glabripennis adults on twigs treated at the higher imidacloprid rate, and feeding was significantly reduced for adults placed on twigs treated at the low imidacloprid rate compared with adults on untreated twigs. In summary, imidacloprid and azadirachtin had both antifeedant and toxic effects against A. glabripennis and P. scalator and have potential for use in management programs. Based on our results, the delivery of high and sustained insecticide concentratio Topics: Acer; Animals; Biological Assay; Body Weight; Coleoptera; Feeding Behavior; Imidazoles; Insect Control; Insecticides; Larva; Lethal Dose 50; Limonins; Neonicotinoids; Nitro Compounds; Plant Stems; Time Factors | 2006 |
Compatibility of an organically based insect control program with honey bee (Hymenoptera: Apidae) pollination in cantaloupes.
The application of azadirachtin to foliage of cantaloupes did not significantly reduce successful pollination by commercially managed honey bees, Apis mellifera L., as measured by numbers of foraging honey bees and yield. Similar results were obtained when the synthetic insecticide imidacloprid (used as a standard by cantaloupe growers) was applied to the soil. Fruit yield and quality, as a function of bee pollination, were statistically equal between the two treatments, and equal to that of the untreated control. The standard treatment of imidacloprid gave significantly better control than azadirachtin of one pest (cucumber beetle) early in the season. Fruit maturity was delayed in untreated plots, consistent with light insect pressure observed. These results indicate that an organically based insect control approach will not alter bloom acceptance and bee forager activity in cantaloupes. Topics: Agriculture; Animals; Bees; Cucumis melo; Flowers; Fruit; Imidazoles; Insect Control; Insecticides; Limonins; Neonicotinoids; Nitro Compounds | 2004 |
Interactions of a nucleopolyhedrovirus with azadirachtin and imidacloprid.
Topics: Animals; Imidazoles; Insect Control; Insecticides; Limonins; Moths; Neonicotinoids; Nitro Compounds; Nucleopolyhedroviruses; Triterpenes | 2000 |