azadirachtin has been researched along with flufenoxuron* in 2 studies
2 other study(ies) available for azadirachtin and flufenoxuron
Article | Year |
---|---|
Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azadirachtin against Tetranychus urticae.
Laboratory studies were developed to evaluate the compatibility of flufenoxuron and azadirachtin with Beauveria bassiana against Tetranychus urticae larvae along with the required Probit analysis of the involved chemicals on all of the life stages of this mite. Flufenoxuron displayed parallel regression lines for the mortality of eggs, deutonymphs and adults. Larvae and protonymphs were the most susceptible life stages. Protonymphs were 35 times more sensitive than eggs and adults. Azadirachtin gave equal mortality on proto- and deutonymphs. The response of eggs and adults was equivalent when treated with azadirachtin. The regression lines for proto- and deutonymphs were parallel to those of adults and eggs yet three times more sensitive. The effects of separate combinations of the entomopathogenic fungus Beauveria bassiana at its LC(20) with flufenoxuron and azadirachtin at their corresponding LC(40) were evaluated on mite larvae. The application of flufenoxuron with B. bassiana revealed a clear synergy. While the combination of azadirachtin and B. bassiana had an additive effect. These combinations with B. bassiana could improve mite control by contributing to a decline in the likelihood of resistance so often described in the literature. Topics: Acaricides; Animals; Beauveria; Female; Limonins; Male; Mites; Mycelium; Ovum; Phenylurea Compounds; Tick Control | 2012 |
Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet.
An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC(50) of 20.4 microg/ml after 24 h, and of 0.24 microg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7-9 microg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. Topics: Animals; Aphids; Diet; Feeding Behavior; Imidazoles; Insect Control; Insecticides; Juvenile Hormones; Lethal Dose 50; Limonins; Neonicotinoids; Niacinamide; Nitro Compounds; Nymph; Phenylurea Compounds; Pyridines; Triazines | 2009 |