azadirachtin and emamectin-benzoate

azadirachtin has been researched along with emamectin-benzoate* in 2 studies

Other Studies

2 other study(ies) available for azadirachtin and emamectin-benzoate

ArticleYear
Bionomic responses of Spodoptera frugiperda (J. E. Smith) to lethal and sublethal concentrations of selected insecticides.
    PloS one, 2023, Volume: 18, Issue:11

    Since 2016, the invasive insect Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) from the Americas has made maize production unattainable without pesticides in parts of Sub-Saharan Africa and Asia. To counteract this pest, farmers often resort to the use hazardous pesticides. This study aimed to investigate botanicals, microbials, and semi-synthetic insecticides in Ghana for pest control without harming local ecosystems. Under laboratory and on-station conditions, the present study evaluated the acute and sublethal responses of S. frugiperda to: (i) Pieris rapae Granulovirus (PrGV) + Bacillus thuringiensis sub sp. kurstaki (Btk) 5 WP, (ii) Btk + monosultap 55 WP, (iii) ethyl palmitate 5 SC, (iv) azadirachtin 0.3 SC, (v) acetamiprid (20 g/l) + λ-cyhalothrin (15 g/l) 35 EC, (vi) acetamiprid (30 g/l) + indoxacarb (16 g/l) 46 EC, and (vii) emamectin benzoate 1.9 EC. The results showed that at 96 hours post-exposure emamectin benzoate-based formulation has the highest acute larvicidal effect with lower LC50 values of 0.019 mL/L. However, the results suggested strong sublethal effects of PrGV + Btk, azadirachtin, and ethyl palmitate on the bionomics of S. frugiperda. Two seasons on-station experiments, showed that the semi-synthetic emamectin benzoate and the bioinsecticide PrGV + Btk are good candidates for managing S. frugiperda. The promising efficacy of emamectin benzoate and PrGV + Btk on the bionomics of S. frugiperda in the laboratory and on-station demonstrated that they are viable options for managing this pest.

    Topics: Animals; Bacillus; Ecology; Ecosystem; Insecticide Resistance; Insecticides; Larva; Spodoptera; Zea mays

2023
Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects?
    PloS one, 2013, Volume: 8, Issue:9

    Pesticide risk assessments are usually based on short-term acute toxicity tests, while longer-term population dynamic related traits, critical to the success of biological control and Integrated Pest Management (IPM) programs, are often overlooked. This is increasingly important with respect to new biopesticides that frequently cause no short-term acute effects, but that can induce multiple physiological and behavioral sublethal effects, leading to a decrease in population growth and ecosystem services. In this study we assessed the lethal and sublethal effects of six biopesticides [abamectin, azadirachtin, Bacillus thuringiensis, borax plus citrus oil (Prev-Am®), emamectin benzoate, and spinosad], used in tomato crops to control the invasive pest Tuta absoluta (Lepidoptera: Gelechiidae), on adults and pupae of the parasitoid Bracon nigricans (Hymenoptera: Braconidae). Data on female survival and production of female offspring were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinosad caused 100% and 80% mortality in exposed adults (even 10 d after the treatment) and pupae, respectively. Although most of the biopesticides had low levels of acute toxicity, multiple sublethal effects were observed. The biocontrol activity of both females that survived 1-h and 10-d old residues, and females that emerged from topically treated pupae was significantly affected by the application of the neurotoxic insecticides emamectin benzoate and abamectin. Furthermore, very low B. nigricans demographic growth indices were estimated for these two insecticides, indicating potential local extinction of the wasp populations. Among the tested products, Bt proved to be the safest for B. nigricans adults and pupae. Our findings emphasize that acute toxicity assessment alone cannot fully predict the actual impact of pesticides on non-target parasitoids. Thus, sublethal effects related to the species specific life-history variables must be carefully considered in order to assess pesticide risks and to incorporate new pesticides, including biopesticides, into IPM programmes.

    Topics: Animals; Bacterial Toxins; Borates; Drug Combinations; Female; Ivermectin; Limonins; Linear Models; Macrolides; Moths; Pesticides; Population Dynamics; Protein Precursors; Reproduction; Solanum lycopersicum; Toxicity Tests; Wasps

2013