azacitidine has been researched along with phytoestrogens in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Dahiya, R; Hirata, H; Igawa, M; Kawamoto, K; Kikuno, N; Majid, S; Shiina, H; Tanaka, Y; Urakami, S | 1 |
Adjakly, M; Bernard-Gallon, D; Bignon, YJ; Boiteux, JP; Dagdemir, A; Guy, L; Lebert, A; Ngollo, M; Penault-Llorca, F | 1 |
Adjakly, M; Bernard-Gallon, D; Bignon, YJ; Boiteux, JP; Dagdemir, A; Guy, L; Judes, G; Karsli-Ceppioglu, S; Lebert, A; Ngollo, M; Penault-LLorca, F | 1 |
3 other study(ies) available for azacitidine and phytoestrogens
Article | Year |
---|---|
Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells.
Topics: Acetylation; Anticarcinogenic Agents; Antimetabolites, Antineoplastic; Azacitidine; Blotting, Western; Cell Line, Tumor; Chromatin Immunoprecipitation; Chromones; CpG Islands; Decitabine; Deubiquitinating Enzyme CYLD; Down-Regulation; Electrophoretic Mobility Shift Assay; Enzyme Inhibitors; Forkhead Box Protein O3; Forkhead Transcription Factors; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Genes, p53; Genes, Tumor Suppressor; Genistein; Histones; Humans; Hydroxamic Acids; Male; Methylation; Morpholines; NF-kappa B; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phytoestrogens; Prostatic Neoplasms; Protein Kinase Inhibitors; PTEN Phosphohydrolase; Reverse Transcriptase Polymerase Chain Reaction; Sirtuin 1; Sirtuins; Tumor Suppressor Proteins; Up-Regulation | 2008 |
Comparative effects of soy phytoestrogens and 17β-estradiol on DNA methylation of a panel of 24 genes in prostate cancer cell lines.
Topics: Azacitidine; Budesonide; Cell Line, Tumor; DNA Methylation; Estradiol; Estrogen Receptor beta; Gene Expression Regulation, Neoplastic; Genistein; Glycine max; Humans; Isoflavones; Male; Phytoestrogens; Promoter Regions, Genetic; Prostatic Neoplasms | 2014 |
Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer?
Topics: Antimetabolites, Antineoplastic; Apoptosis; Azacitidine; Budesonide; Cell Line, Tumor; Cell Proliferation; DNA Methylation; DNA, Neoplasm; Epigenesis, Genetic; Gene Expression Regulation, Neoplastic; Genistein; Glycine max; Humans; Isoflavones; Male; Oligonucleotide Array Sequence Analysis; Phytoestrogens; Prostatic Neoplasms | 2015 |