azacitidine has been researched along with daidzein in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (50.00) | 29.6817 |
2010's | 2 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Chen, D; Christman, JK; Fang, MZ; Jin, Z; Sun, Y; Yang, CS | 1 |
Adjakly, M; Bernard-Gallon, D; Bignon, YJ; Boiteux, JP; Dagdemir, A; Guy, L; Lebert, A; Ngollo, M; Penault-Llorca, F | 1 |
Adjakly, M; Bernard-Gallon, D; Bignon, YJ; Boiteux, JP; Dagdemir, A; Guy, L; Judes, G; Karsli-Ceppioglu, S; Lebert, A; Ngollo, M; Penault-LLorca, F | 1 |
4 other study(ies) available for azacitidine and daidzein
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy.
Topics: Anticarcinogenic Agents; Antineoplastic Agents; Azacitidine; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p16; Decitabine; DNA Methylation; Dose-Response Relationship, Drug; Esophageal Neoplasms; Genistein; Glycine max; Humans; Hydroxamic Acids; Isoflavones; Isothiocyanates; O(6)-Methylguanine-DNA Methyltransferase; Receptors, Retinoic Acid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sulfites; Sulfoxides; Tea; Thiocyanates | 2005 |
Comparative effects of soy phytoestrogens and 17β-estradiol on DNA methylation of a panel of 24 genes in prostate cancer cell lines.
Topics: Azacitidine; Budesonide; Cell Line, Tumor; DNA Methylation; Estradiol; Estrogen Receptor beta; Gene Expression Regulation, Neoplastic; Genistein; Glycine max; Humans; Isoflavones; Male; Phytoestrogens; Promoter Regions, Genetic; Prostatic Neoplasms | 2014 |
Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer?
Topics: Antimetabolites, Antineoplastic; Apoptosis; Azacitidine; Budesonide; Cell Line, Tumor; Cell Proliferation; DNA Methylation; DNA, Neoplasm; Epigenesis, Genetic; Gene Expression Regulation, Neoplastic; Genistein; Glycine max; Humans; Isoflavones; Male; Oligonucleotide Array Sequence Analysis; Phytoestrogens; Prostatic Neoplasms | 2015 |