avoparcin and salinomycin

avoparcin has been researched along with salinomycin* in 3 studies

Other Studies

3 other study(ies) available for avoparcin and salinomycin

ArticleYear
Control of proliferative enteropathy in growing/fattening pigs using growth promoters.
    Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B, 1998, Volume: 45, Issue:2

    The aim of this study was to evaluate the effect of different antibiotics used as growth promoters on the control of porcine intestinal adenomatosis when administered in weaning, growing and fattening pig diets, according to Annex I of the European Union directive (70/524/EEC and its subsequent amendments to date) for the use of feed additives. On a farm with a previous history of proliferative enteropathy outbreaks, 648 weaned piglets (23 days old) were divided into nine experimental groups according to bodyweight and sex ratio, each group comprising four pens with 18 pigs in each pen. One group served the trial as a negative (unmedicated) control: another (the positive control) received monensin via feed at 100 p.p.m. up to the end of the growing phase (107 days old) and 50 p.p.m. up to slaughter age (156 days old). The remaining seven groups were offered feed with the addition of the following antibiotics: virginia-mycin (50-20 p.p.m.), avilamycin (40-20 p.p.m.), spiramycin (50-20 p.p.m.), zinc bacitracin (50-10 p.p.m.), avoparcin (40-20 p.p.m.), tylosin (40-20 p.p.m.) and salinomycin (60-30 p.p.m.), respectively. The performance of the pigs in the positive control group was very satisfying and among the highest in the trial, verifying earlier field studies. As a general conclusion it seems that all tested growth promoters had a beneficial effect compared with the untreated control, indicated by the decrease of mortality rate, the elimination of diarrhoeal incidence and the enhancement of growth performance, although the proliferative enteropathy control achieved by each substance was not always satisfactory. More specifically, the antibiotic growth promoters tested can be scaled according to their total efficacy as follows: 1. Salinomycin, tylosin, spiramycin; 2. Virginiamycin, zinc bacitracin, avilamycin; and 3. Avoparcin. Finally, it is considered that part of the growth promotion efficacy of the tested substances is due to their potential capacity to control porcine intestinal adenomatosis; thus, in future growth performance trials, the disease background of the trial farms must be examined, especially for porcine enteropathy challenges.

    Topics: Abattoirs; Animals; Anti-Bacterial Agents; Antibiotic Prophylaxis; Bacitracin; Bacterial Infections; Disease Outbreaks; Female; Food, Fortified; Glycopeptides; Greece; Growth Substances; Ileitis; Ileum; Intestinal Mucosa; Male; Monensin; Oligosaccharides; Pyrans; Spiramycin; Swine; Swine Diseases; Tylosin; Virginiamycin

1998
Effect of salinomycin, flavomycin and avoparcin on some physiological traits of growing lambs, with particular respect to rumen fermentation.
    Acta veterinaria Hungarica, 1988, Volume: 36, Issue:1-2

    Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Bambermycins; Fermentation; Glycopeptides; Male; Pyrans; Rumen; Sheep

1988
Susceptibility and resistance of ruminal bacteria to antimicrobial feed additives.
    Applied and environmental microbiology, 1987, Volume: 53, Issue:7

    Susceptibility and resistance of ruminal bacterial species to avoparcin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, and two new ionophore antibiotics, RO22-6924/004 and RO21-6447/009, were determined. Generally, antimicrobial compounds were inhibitory to gram-positive bacteria and those bacteria that have gram-positive-like cell wall structure. MICs ranged from 0.09 to 24.0 micrograms/ml. Gram-negative bacteria were resistant at the highest concentration tested (48.0 micrograms/ml). On the basis of their fermentation products, ruminal bacteria that produce lactic acid, butyric acid, formic acid, or hydrogen were susceptible and bacteria that produce succinic acid or ferment lactic acid were resistant to the antimicrobial compounds. Selenomonas ruminantium was the only major lactic acid-producing bacteria resistant to all the antimicrobial compounds tested. Avoparcin and tylosin appeared to be less inhibitory (MIC greater than 6.0 micrograms/ml) than the other compounds to the two major lactic acid-producing bacteria, Streptococcus bovis and Lactobacillus sp. Ionophore compounds seemed to be more inhibitory (MIC, 0.09 to 1.50 micrograms/ml) than nonionophore compounds (MIC, 0.75 to 12.0 micrograms/ml) to the major butyric acid-producing bacteria. Treponema bryantii, an anaerobic rumen spirochete, was less sensitive to virginiamycin than to the other antimicrobial compounds. Ionophore compounds were generally bacteriostatic, and nonionophore compounds were bactericidal. The specific growth rate of Bacteroides ruminicola was reduced by all the antimicrobial compounds except avoparcin. The antibacterial spectra of the feed additives were remarkably similar, and it appears that MICs may not be good indicators of the potency of the compounds in altering ruminal fermentation characteristics.

    Topics: Animal Feed; Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Bacteria; Carboxylic Acids; Drug Resistance, Microbial; Furans; Glycopeptides; Hydrogen; Indenes; Ionophores; Leucomycins; Peptides; Pyrans; Rumen; Tylosin; Virginiamycin

1987