auy-954 has been researched along with sphingosine-1-phosphate* in 2 studies
2 other study(ies) available for auy-954 and sphingosine-1-phosphate
Article | Year |
---|---|
Sphingosine-1-phosphate-induced airway hyper-reactivity in rodents is mediated by the sphingosine-1-phosphate type 3 receptor.
There is a need to better understand the mechanism of airway hyper-reactivity, a key feature of asthma. Evidence suggests that sphingosine-1-phosphate (S1P) could be a major player in this phenomenon. The purpose of this work was to define the S1P receptor responsible for this phenomenon. We have studied, in the rat, the effect of two S1P synthetic receptor ligands, 2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol (FTY720) (which in its phosphorylated form is a potent agonist at each S1P receptor except S1P(2)) and 3-[[2-[4-phenyl-3-(trifluoromethyl)phenyl]-1-benzothiophen-5-yl]methylamino]propanoic acid (AUY954) (a selective S1P(1) agonist) on lung function in vivo. This was complemented by in vitro studies using isolated trachea from the rat, the S1P(3) receptor-deficient mouse, and its wild-type counterpart. After oral administration, FTY720 induced a generalized airway hyper-reactivity to a range of contractile stimuli. This was observed as early as 1 h postdosing, lasted for at least 24 h, and was not subject to desensitization. In both rat and wild-type mouse isolated trachea, preincubation with the active phosphorylated metabolite of FTY720 induced hyper-responsiveness to 5-hydroxytryptamine. This effect was not seen in the isolated tracheas from S1P(3) receptor-deficient mice. AUY954, did not mimic the effect of FTY720 either in vivo or in vitro. Our data are consistent with activation of the S1P pathway inducing a generalized airway hyper-reactivity in rats and mice that is mediated by the S1P(3) receptor. S1P(3) receptor antagonists might prove to be useful as new therapeutic strategies aimed at blocking the airway hyper-reactivity observed in asthma. Topics: Albuterol; Animals; Asthma; beta-Alanine; Bronchial Hyperreactivity; Bronchoconstriction; Fingolimod Hydrochloride; Lung; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Propylene Glycols; Rats; Rats, Inbred BN; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors; Tachyphylaxis; Thiophenes; Trachea | 2012 |
Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury.
Sphingosine 1-phosphate (S1P) is a key endogenous regulator of the response to lung injury, maintaining endothelial barrier integrity through interaction with one of its receptors, S1P(1). The short-term administration of S1P or S1P(1) receptor agonists enhances endothelial monolayer barrier function in vitro, and attenuates injury-induced vascular leak in the lung and other organ systems in vivo. Although S1P(1) agonists bind to and activate S1P(1), several of these agents also induce receptor internalization and degradation, and may therefore act as functional antagonists of S1P(1) after extended exposure. Here we report on the effects of prolonged exposure to these agents in bleomycin-induced lung injury. We demonstrate that repeated administration of S1P(1) agonists dramatically worsened lung injury after bleomycin challenge, as manifested by increased vascular leak and mortality. Consistent with these results, prolonged exposure to S1P(1) agonists in vitro eliminated the ability of endothelial cell monolayers to respond appropriately to the barrier-protective effects of S1P, indicating a loss of normal S1P-S1P(1) signaling. As bleomycin-induced lung injury progressed, continued exposure to S1P(1) agonists also resulted in increased pulmonary fibrosis. These data indicate that S1P(1) agonists can act as functional antagonists of S1P(1) on endothelial cells in vivo, which should be considered in developing these agents as therapies for vascular leak syndromes. Our findings also support the hypothesis that vascular leak is an important component of the fibrogenic response to lung injury, and suggest that targeting the S1P-S1P(1) pathway may also be an effective therapeutic strategy for fibrotic lung diseases. Topics: Animals; beta-Alanine; Bleomycin; Blood Coagulation; Endothelial Cells; Fibrosis; Fingolimod Hydrochloride; Humans; Lung Injury; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Oxadiazoles; Pneumonia; Propylene Glycols; Pulmonary Alveoli; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Survival Analysis; Thiophenes; Vascular Diseases | 2010 |