atropine has been researched along with phaclofen in 3 studies
Studies (atropine) | Trials (atropine) | Recent Studies (post-2010) (atropine) | Studies (phaclofen) | Trials (phaclofen) | Recent Studies (post-2010) (phaclofen) |
---|---|---|---|---|---|
26,711 | 1,259 | 1,697 | 263 | 0 | 33 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (66.67) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cotman, CW; Kahle, JS | 1 |
Dun, NJ; Hwang, BH; Mizoguchi, H; Nagase, H; Narita, M; Oji, DE; Tseng, LF | 1 |
Prado, WA; Silva, JR; Silva, ML | 1 |
3 other study(ies) available for atropine and phaclofen
Article | Year |
---|---|
L-2-amino-4-phosphonobutanoic acid and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid reduce paired-pulse depression recorded from medial perforant path in the dentate gyrus of rat hippocampal slices.
Topics: Aminobutyrates; Animals; Atropine; Baclofen; Carbachol; Cycloleucine; Depression, Chemical; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; Membrane Potentials; Neural Pathways; Neurotransmitter Uptake Inhibitors; Picrotoxin; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Theophylline | 1993 |
Identification of the G-protein-coupled ORL1 receptor in the mouse spinal cord by [35S]-GTPgammaS binding and immunohistochemistry.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Atropine; Autoradiography; Baclofen; Binding, Competitive; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Haloperidol; Immunohistochemistry; In Vitro Techniques; Male; Membranes; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Opioid Peptides; Peptide Fragments; Propranolol; Receptors, Opioid; Somatostatin; Spinal Cord; Sulfur Radioisotopes; Yohimbine | 1999 |
Analgesia induced by 2- or 100-Hz electroacupuncture in the rat tail-flick test depends on the activation of different descending pain inhibitory mechanisms.
Topics: Adjuvants, Anesthesia; Adrenergic alpha-Antagonists; Analgesia; Anesthetics, Intravenous; Animals; Atropine; Baclofen; Bicuculline; Biophysics; Dioxanes; Disease Models, Animal; Electroacupuncture; GABA Agents; Male; Methysergide; Models, Biological; Multivariate Analysis; Naloxone; Narcotic Antagonists; Pain; Pain Management; Pain Measurement; Rats; Rats, Wistar; Reaction Time; Serotonin Antagonists; Tail; Thiopental; Time Factors | 2011 |