Page last updated: 2024-09-05

atropine and paroxetine

atropine has been researched along with paroxetine in 14 studies

Compound Research Comparison

Studies
(atropine)
Trials
(atropine)
Recent Studies (post-2010)
(atropine)
Studies
(paroxetine)
Trials
(paroxetine)
Recent Studies (post-2010) (paroxetine)
26,7111,2591,6974,2571,0311,031

Protein Interaction Comparison

ProteinTaxonomyatropine (IC50)paroxetine (IC50)
Voltage-dependent L-type calcium channel subunit alpha-1FHomo sapiens (human)3.9
MyeloperoxidaseHomo sapiens (human)0.02
Aldo-keto reductase family 1 member B1Rattus norvegicus (Norway rat)0.086
Muscarinic acetylcholine receptor M2Homo sapiens (human)0.532
Muscarinic acetylcholine receptor M4Homo sapiens (human)0.244
Muscarinic acetylcholine receptor M5Homo sapiens (human)0.123
Quinolone resistance protein NorAStaphylococcus aureus7
Cytochrome P450 2D6Homo sapiens (human)0.5003
Muscarinic acetylcholine receptor M1Homo sapiens (human)0.145
Muscarinic acetylcholine receptor M3Homo sapiens (human)0.179
Beta-adrenergic receptor kinase 1Bos taurus (cattle)1.08
Sodium-dependent noradrenaline transporter Homo sapiens (human)0.093
Sodium-dependent dopamine transporterRattus norvegicus (Norway rat)0.623
Beta-adrenergic receptor kinase 1Homo sapiens (human)1.24
Substance-P receptorHomo sapiens (human)0.9
Sodium-dependent serotonin transporterHomo sapiens (human)0.0007
Sodium-dependent serotonin transporterRattus norvegicus (Norway rat)0.0003
P2X purinoceptor 4Rattus norvegicus (Norway rat)2.45
Voltage-dependent L-type calcium channel subunit alpha-1D Homo sapiens (human)3.9
Sodium-dependent dopamine transporter Homo sapiens (human)0.672
Voltage-dependent L-type calcium channel subunit alpha-1SHomo sapiens (human)3.9
Voltage-dependent L-type calcium channel subunit alpha-1CHomo sapiens (human)3.9
P2X purinoceptor 4Homo sapiens (human)2.8067
Sigma non-opioid intracellular receptor 1Homo sapiens (human)5.366
TransporterRattus norvegicus (Norway rat)0.535

Research

Studies (14)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's8 (57.14)29.6817
2010's6 (42.86)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Gao, F; Lombardo, F; Obach, RS; Shalaeva, MY1
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Lombardo, F; Obach, RS; Waters, NJ1
Ahman, M; Holmén, AG; Wan, H1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V1
Bellman, K; Knegtel, RM; Settimo, L1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Jones, LH; Nadanaciva, S; Rana, P; Will, Y1
Astier, B; Blier, P; Chouvet, G; Debonnel, G; Faure, C; Haddjeri, N; Lucas, G; Mnie-Filali, O; Renaud, B1
Bourin, M; Hascoët, M; Nic Dhonnchadha, BA; Ripoll, N; Sébille, V1

Reviews

1 review(s) available for atropine and paroxetine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

13 other study(ies) available for atropine and paroxetine

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics.
    Journal of medicinal chemistry, 2004, Feb-26, Volume: 47, Issue:5

    Topics: Algorithms; Blood Proteins; Half-Life; Humans; Hydrogen-Ion Concentration; Models, Biological; Pharmaceutical Preparations; Pharmacokinetics; Protein Binding; Statistics as Topic; Tissue Distribution

2004
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
    Journal of medicinal chemistry, 2009, Mar-26, Volume: 52, Issue:6

    Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry

2009
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
FDA-approved drug labeling for the study of drug-induced liver injury.
    Drug discovery today, 2011, Volume: 16, Issue:15-16

    Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration

2011
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014
Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
    Bioorganic & medicinal chemistry letters, 2016, 08-15, Volume: 26, Issue:16

    Topics: Adenosine Triphosphate; Benzbromarone; Cell Line; Cell Survival; Chromans; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Humans; Pharmaceutical Preparations; Thiazolidinediones; Troglitazone

2016
In-vivo modulation of central 5-hydroxytryptamine (5-HT1A) receptor-mediated responses by the cholinergic system.
    The international journal of neuropsychopharmacology, 2004, Volume: 7, Issue:4

    Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Atropine; Body Temperature; Male; Motor Activity; Muscarinic Antagonists; Neurons; Parasympathetic Nervous System; Paroxetine; Raphe Nuclei; Rats; Rats, Sprague-Dawley; Receptor, Serotonin, 5-HT1A; Selective Serotonin Reuptake Inhibitors; Serotonin; Serotonin Receptor Agonists; Swimming

2004
The four-plates test-retest paradigm to discriminate anxiolytic effects.
    Psychopharmacology, 2005, Volume: 180, Issue:1

    Topics: Adrenergic Uptake Inhibitors; Amphetamines; Animals; Anti-Anxiety Agents; Anxiety; Atropine; Avoidance Learning; Behavior, Animal; Benzodiazepines; Cholinergic Agents; Cyclohexanols; Discrimination, Psychological; Dose-Response Relationship, Drug; Male; Mice; Paroxetine; Receptors, GABA-A; Selective Serotonin Reuptake Inhibitors; Serotonin 5-HT2 Receptor Agonists; Venlafaxine Hydrochloride

2005