atropine has been researched along with deferiprone in 2 studies
Studies (atropine) | Trials (atropine) | Recent Studies (post-2010) (atropine) | Studies (deferiprone) | Trials (deferiprone) | Recent Studies (post-2010) (deferiprone) |
---|---|---|---|---|---|
26,711 | 1,259 | 1,697 | 1,016 | 142 | 409 |
Protein | Taxonomy | atropine (IC50) | deferiprone (IC50) |
---|---|---|---|
Lysine-specific demethylase 6A | Homo sapiens (human) | 4.2 | |
Lysine-specific demethylase 4A | Homo sapiens (human) | 3.275 | |
Lysine-specific demethylase 5C | Homo sapiens (human) | 5.6 | |
Lysine-specific demethylase 2B | Homo sapiens (human) | 8.1 | |
Deoxyhypusine hydroxylase | Homo sapiens (human) | 5 | |
Lysine-specific demethylase 2A | Homo sapiens (human) | 6.8 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
Chattipakorn, N; Chattipakorn, SC; Fucharoen, S; Jaiwongkam, T; Kerdphoo, S; Khamseekaew, J; Kumfu, S; Srichairatanakool, S; Wongjaikam, S | 1 |
2 other study(ies) available for atropine and deferiprone
Article | Year |
---|---|
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Effects of iron overload, an iron chelator and a T-Type calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic mice.
Topics: Aminophylline; Animals; Apoptosis; Atropine; Blood Pressure; Calcium Channel Blockers; Calcium Channels, T-Type; Deferiprone; Dihydropyridines; Drug Combinations; Heart; Heart Rate; Iron; Iron Chelating Agents; Iron Overload; Male; Malondialdehyde; Mice; Mitochondria; Myocardium; Nitroglycerin; Nitrophenols; Organelle Biogenesis; Organophosphorus Compounds; Oxidative Phosphorylation; Papaverine; Phenobarbital; Pyridones; Signal Transduction; Thalassemia | 2017 |