atrial-natriuretic-factor and epigallocatechin-gallate

atrial-natriuretic-factor has been researched along with epigallocatechin-gallate* in 4 studies

Other Studies

4 other study(ies) available for atrial-natriuretic-factor and epigallocatechin-gallate

ArticleYear
EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice.
    International journal of molecular medicine, 2022, Volume: 49, Issue:1

    Myocardial remodeling is a complex pathological process and its mechanism is unclear. The present study investigated whether epigallocatechin gallate (EGCG) prevents myocardial remodeling by regulating histone acetylation and explored the mechanisms underlying this effect in the heart of a mouse model of transverse aortic constriction (TAC). A TAC mouse model was created by partial thoracic aortic banding (TAB). Subsequently, TAC mice were injected with EGCG at a dose of 50 mg/kg/day for 12 weeks. The hearts of mice were collected for analysis 4, 8 and 12 weeks after TAC. Histopathological changes in the heart were observed by hematoxylin and eosin, Masson trichrome and wheat germ agglutinin staining. Protein expression levels were investigated using western blotting. Cardiac function of mice was detected by echocardiography. The level of histone acetylated lysine 27 on histone H3 (H3K27ac) first increased and then decreased in the hearts of mice at 4, 8 and 12 weeks after TAC. The expression levels of two genes associated with pathological myocardial remodeling, atrial natriuretic peptide (

    Topics: Acetylation; Animals; Atrial Natriuretic Factor; Atrial Remodeling; Catechin; Constriction; Disease Models, Animal; Electrocardiography; Heart Failure; Histone Deacetylases; Histones; Lysine; Male; MEF2 Transcription Factors; Natriuretic Peptide, Brain; Survival Rate; Ventricular Remodeling

2022
Epigallocatechin-3-gallate inhibits angiotensin II-induced cardiomyocyte hypertrophy via regulating Hippo signaling pathway in H9c2 rat cardiomyocytes.
    Acta biochimica et biophysica Sinica, 2019, Apr-01, Volume: 51, Issue:4

    Angiotensin II (AII) has been well known to induce cardiomyocyte hypertrophy. Epigallocatechin-3-gallate (EGCG) is the main active component of green tea and it has been shown to exhibit strong cardioprotective potential, although the underlying molecular mechanisms remain unclear. In this study, we investigated the role and mechanism of EGCG in preventing AII-induced cardiomyocyte hypertrophy using rat H9c2 cardiomyocytes cells. Reactive oxygen species assay, cell size, and mRNA expression of cardiac hypertrophy markers ANP and BNP were assessed in response to AII treatment. In addition, expression of proteins involved in Hippo signaling pathway were determined by western blot analysis. We found that AII treatment resulted in significant upregulation of ANP and BNP expression levels and increase in H9c2 cell size, which were markedly attenuated by EGCG treatment. Furthermore, our results suggested that EGCG inhibited AII-induced cardiac hypertrophy via regulating the Hippo signaling pathway. Therefore, EGCG may be an effective agent for preventing cardiac hypertrophy.

    Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Catechin; Cell Line; Gene Expression Regulation; Molecular Structure; Myocytes, Cardiac; Natriuretic Peptide, Brain; Protein Serine-Threonine Kinases; Rats; Reactive Oxygen Species; Signal Transduction

2019
EGCG inhibits proliferation of cardiac fibroblasts in rats with cardiac hypertrophy.
    Planta medica, 2009, Volume: 75, Issue:2

    This study was carried out in order to investigate the effects of epigallocatechin gallate (EGCG) on myocardial fibrosis and cell proliferation in cardiac hypertrophy. Cardiac hypertrophy was established in rats by abdominal aortic constriction, and EGCG at doses of 25, 50 and 100 mg/kg was administered intragastrically for 6 weeks. The results showed that in the rats with cardiac hypertrophy, EGCG at 25 - 100 mg/kg dose-dependently reduced heart weight indices, decreased atrial natriuretic polypeptide and endothelin levels in plasma, but increased nitrite (the oxidative product of NO) levels in the serum and in the myocardium. EGCG also reduced the hydroxyproline concentration and decreased the proliferating cell nuclear antigen expression in the hypertrophic myocardium. EGCG remarkably inhibited pressure overload-induced c-myc increase in Western blot analysis. In cultured newborn rat cardiac fibroblasts, treatment with EGCG at 12.5 - 200 mg/L for 6 - 48 h decreased cell proliferation induced by serum. EGCG at 12.5 - 100 mg/L dose-dependently inhibited cell proliferation and DNA synthesis of fibroblasts induced by angiotensin II (Ang II) at 1 mumol/L. EGCG also significantly increased nitrite levels in culture medium, and up-regulated inducible nitric oxide synthase protein expression if compared with the Ang II group. The inhibitory effect of EGCG on cell proliferation induced by Ang II was partly blocked by pretreatment with N(omega)-nitro- L-arginine methyl ester hydrochloride. These results suggest that EGCG inhibits the proliferation of cardiac fibroblasts both in vivo and in vitro, thereby preventing myocardial fibrosis in cardiac hypertrophy. EGCG might exert its cardiac protective action through induction of NO production.

    Topics: Angiotensin II; Animals; Antioxidants; Atrial Natriuretic Factor; Camellia sinensis; Cardiomegaly; Catechin; Cell Proliferation; Disease Models, Animal; DNA-Binding Proteins; Dose-Response Relationship, Drug; Endothelins; Enzyme Inhibitors; Fibroblasts; Fibrosis; Hydroxyproline; Male; Myocardium; Nitric Oxide Synthase Type II; Nitrites; Organ Size; Plant Extracts; Proliferating Cell Nuclear Antigen; Rats; Rats, Sprague-Dawley; Transcription Factors

2009
Epigallocatechin-3-gallate attenuates cardiac hypertrophy in hypertensive rats in part by modulation of mitogen-activated protein kinase signals.
    Clinical and experimental pharmacology & physiology, 2009, Volume: 36, Issue:9

    1. It has been demonstrated that epigallocatechin-3-gallate (EGCG) inhibits cardiac hypertrophy through its antihypertensive and anti-oxidant effects. However, the underlying molecular mechanism is not clear. 2. In the present study, we tested the hypothesis that EGCG attenuates transaortic abdominal aortic constriction (TAC)-induced ventricular hypertrophy by regulating mitogen-activated protein kinase (MAPK) signal pathways in hypertensive rats. Four groups of rats were used: (i) a sham-operated control group; (ii) an EGCG-treated (50 mg/kg per day, i.p., for 21 days) sham-operated group; (iii) a TAC group; and (iv) an EGCG-treated TAC group. Histological analysis of whole hearts and biochemical analyses of left ventricular (LV) tissue were used to investigate the effects of EGCG. 3. The results showed that the LV myocyte diameter and the expression of atrial natriuretic peptide, brain natriuretic peptide and β-myocardial heavy chain were significantly decreased in the EGCG-treated (50 mg/kg per day, i.p.) TAC group. Levels of reactive oxygen species and malondialdehyde in the lV were significantly reduced by EGCG in the TAC group. Total superoxide dismutase, catalase and glutathione peroxidase activities were decreased in the TAC group, and this decrease was significantly restored by EGCG treatment. Phosphorylation of extracellular signal-regulated kinase 2, p38 and c-Jun N-terminal kinase 1 was significantly reversed in the LV of EGCG-treated TAC rats (40%, 53% and 52% vs TAC, respectively), accompanied by significant inhibition of nuclear factor-κB and activator protein-1. Transaortic abdominal aortic constriction significantly upregulated LV expression of matrix metalloproteinase-9 from 32 ± 6 to 100 ± 12% and this increase was inhibited by EGCG treatment (from 100 ± 12 to 50 ± 15%). In addition, TAC decreased mitochondrial DNA copy number and the activity of respiratory chain complexes I (from 100 ± 7 to 68 ± 5%), III (from 100 ± 4 to 2 ± 5%) and IV (from 766 ± 2 to 100 ± 5%); this decrease was reversed by EGCG treatment to levels seen in sham-operated rats.

    Topics: Animals; Antioxidants; Atrial Natriuretic Factor; Catalase; Catechin; Disease Models, Animal; DNA, Mitochondrial; Electron Transport Chain Complex Proteins; Enzyme Activation; Glutathione Peroxidase; Hemodynamics; Hypertension; Hypertrophy, Left Ventricular; Male; Malondialdehyde; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mitochondria, Heart; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 8; Mitogen-Activated Protein Kinases; Myocardium; Myosin Heavy Chains; Natriuretic Peptide, Brain; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Superoxide Dismutase; Transcription Factor AP-1

2009