atrial-natriuretic-factor has been researched along with 3-nitrotyrosine* in 5 studies
5 other study(ies) available for atrial-natriuretic-factor and 3-nitrotyrosine
Article | Year |
---|---|
Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling. Topics: Amidohydrolases; Animals; Arginine; Atrial Natriuretic Factor; Disease Models, Animal; Fibrosis; Genetic Predisposition to Disease; Hypertrophy, Left Ventricular; Male; Mice, Knockout; Myocytes, Cardiac; Nitric Oxide; Phenotype; Signal Transduction; Tyrosine; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2017 |
Left ventricular pressure-volume measurements and myocardial gene expression profile in type 2 diabetic Goto-Kakizaki rats.
The Goto-Kakizaki (GK) rat, a non-obese model of type 2 diabetes mellitus (T2DM), was generated by the selective inbreeding of glucose-intolerant Wistar rats. This is a convenient model for studying diabetes-induced cardiomyopathy independently from the effects of the metabolic syndrome. We investigated the myocardial functional and structural changes and underlying molecular pathomechanisms of short-term and mild T2DM. The presence of DM was confirmed by an impaired oral glucose tolerance in the GK rats compared with the age-matched nondiabetic Wistar rats. Data from cardiac catheterization showed that in GK rats, although the systolic indexes were not altered, the diastolic stiffness was increased compared with nondiabetics (end-diastolic-pressure-volume-relationship: 0.12 ± 0.04 vs. 0.05 ± 0.01 mmHg/μl, P < 0.05). Additionally, DM was associated with left-ventricular hypertrophy and histological evidence of increased myocardial fibrosis. The plasma pro-B-type natriuretic peptide, the cardiac troponin-T, glucose, and the urinary glucose concentrations were significantly higher in GK rats. Among the 125 genes surveyed using PCR arrays, DM significantly altered the expression of five genes [upregulation of natriuretic peptide precursor-A and connective tissue growth factor, downregulation of c-reactive protein, interleukin-1β, and tumor necrosis factor (TNF)-α mRNA-level]. Of the altered genes, which were evaluated by Western blot, only TNF-α protein expression was significantly decreased. The ECG recordings revealed no significant differences. In conclusion, while systolic dysfunction, myocardial inflammation, and abnormal electrical conduction remain absent, short-term and mild T2DM induce the alteration of cardiac TNF-α at both the mRNA and protein levels. Further assessments are required to reveal if TNF-α plays a role in the early stage of diabetic cardiomyopathy development. Topics: Animals; Apoptosis; Atrial Natriuretic Factor; Blood Glucose; C-Reactive Protein; Connective Tissue Growth Factor; Diabetes Mellitus, Type 2; Down-Regulation; Echocardiography; Electrocardiography; Fibrosis; Glucose Tolerance Test; Glycosuria; Hypertrophy, Left Ventricular; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Interleukin-1beta; Male; Myocardium; Natriuretic Peptide, Brain; Oxidative Stress; Peptide Fragments; Polymerase Chain Reaction; Rats; Rats, Wistar; RNA, Messenger; Signal Transduction; Troponin T; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure | 2016 |
Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension.
Heart failure and related cardiac complications remains a great health challenge. We investigated the effects of upregulating heme-oxygenase (HO) on myocardial histo-pathological lesions, proinflammatory cytokines/chemokines, oxidative mediators and important markers of heart failure such as osteopontin and osteoprotergerin in N(ω)-nitro-l-arginine methyl ester (L-NAME)-induced hypertension. Treatment with the HO-inducer, heme-arginate improved myocardial morphology in L-NAME hypertensive rats by attenuating subendocardial injury, interstitial fibrosis, mononuclear-cell infiltration and cardiomyocyte hypertrophy. These were associated with the reduction of several inflammatory/oxidative mediators including chemokines/cytokines such as macrophage inflammatory protein-1 alpha (MIP-1α), macrophage chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, endothelin-1, 8-isoprostane, nitrotyrosine, and aldosterone. Similarly, heme-arginate abated the elevated levels of extracellular matrix/remodeling proteins including transforming-growth factor beta (TGF-β1) and collagen-IV in the myocardium. These were accompanied by significant reduction of proteins of heart failure such as osteopontin and osteoprotegerin. Interestingly, the cardio-protective effects of heme-arginate were associated with the potentiation of adiponectin, atrial-natriuretic peptide (ANP), HO-1, HO-activity, cyclic gnanosine monophosphate (cGMP) and the total-anti-oxidant capacity, whereas the HO-inhibitor, chromium-mesoporphyrin nullified the effects of heme-arginate, exacerbating inflammatory injury and oxidative insults. We conclude that heme-arginate therapy protects myocardial damage by potentiating the HO-adiponectin-ANP axis, which in turn suppressed the elevated levels of aldosterone, pro-inflammatory chemokines/cytokines, mononuclear-cell infiltration and oxidative stress, with concomitant reduction of extracellular matrix/remodeling proteins and heart failure proteins. These data suggest a cardio-protective role of the HO system against L-NAME-induced hypertension that could be explored in the design of novel strategies against cardiomyopathy. Topics: Adiponectin; Aldosterone; Animals; Antioxidants; Arginine; Atrial Natriuretic Factor; Biomarkers; Blood Pressure; Cardiomyopathies; Cardiotonic Agents; Chemokine CCL2; Chemokine CCL3; Cyclic GMP; Dinoprost; Endothelin-1; Enzyme Induction; Extracellular Matrix Proteins; Heart Failure; Heme; Heme Oxygenase (Decyclizing); Hypertension; Interleukin-1beta; Interleukin-6; Male; NG-Nitroarginine Methyl Ester; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha; Tyrosine | 2014 |
Altered regulation of renal nitric oxide and atrial natriuretic peptide systems in angiotensin II-induced hypertension.
The present study was aimed to determine whether there is an altered role of local nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in the kidney in association with the angiotensin (Ang) II-induced hypertension. Male Sprague-Dawley rats were used. Ang II (100 ng·min⁻¹·kg⁻¹) was infused through entire time course. Thirteenth day after beginning the regimen, kidneys were taken. The protein expression of NO synthase (NOS) and nitrotyrosine was determined by semiquantitative immunoblotting. The mRNA expression of components of ANP system was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclases were determined by the amount of cGMP generated in responses to sodium nitroprusside and ANP, respectively. There developed hypertension and decreased creatinine clearance in the experimental group. The protein expression of eNOS, nNOS and nitrotyrosine was increased in the cortex, while that of iNOS remained unaltered. The urinary excretion of NO increased in Ang II-induced hypertensive rats. The catalytic activity of soluble guanylyl cyclase was blunted in the glomerulus in Ang II-induced hypertensive rats. The mRNA expression of ANP was increased in Ang II-induced hypertensive rats. Neither the expression of NPR-A nor that of NPR-C was changed. The protein expression of neutral endopeptidase was decreased and the activity of particulate guanylyl cyclase was blunted in the glomerulus and papilla in Ang II-induced hypertensive rats. In conclusion, the synthesis of NO and ANP was increased in the kidney of Ang II-induced hypertension, while stimulated cGMP response was blunted. These results suggest desensitization of guanylyl cyclase in the kidney of Ang II-induced hypertensive rats, which may contribute to the associated renal vasoconstriction and hypertension. Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Blood Pressure; Cyclic GMP; Hypertension; Kidney; Kidney Function Tests; Male; Neprilysin; Nitric Oxide; Nitric Oxide Synthase; Rats; Rats, Sprague-Dawley; Transcription, Genetic; Tyrosine | 2011 |
Nitric oxide inhibits neutrophil beta 2 integrin function by inhibiting membrane-associated cyclic GMP synthesis.
The aim of this investigation was to identify the mechanism by which nitric oxide inhibits neutrophil beta 2 integrin dependent adherence. Isolated rat neutrophils from blood and peritoneal exudates were exposed for 2 min to nitric oxide generated by diethylamine-NO at rates between 1.6 and 138 nmol/min. Exposure to nitric oxide at rates less than 14 nmol/min had no effect on adherence. Exposure to 14 to 56 nmol nitric oxide/min inhibited beta 2 integrin dependent adherence to endothelial cells, nylon columns, and fibrinogen-coated plates, but higher concentrations had no significant effect on adherence. Adherence by beta 2 integrins could be restored by incubating cells with dithioerythritol, phorbol 12-myristate 13-acetate, or 8-bromo cyclic GMP. Elevations in cellular cyclic GMP concentration were associated with adherence, but this did not occur after cells were exposed to concentrations of nitric oxide that inhibited beta 2 integrin-dependent adherence. Elevations in cyclic GMP did occur after cells were incubated with dithioerythritol or phorbol 12-myristate 13-acetate. Concentrations of nitric oxide that inhibited beta 2 integrin-dependent adherence also inhibited catalytic activity of membrane associated guanylate cyclase and binding of atrial natriuretic peptide, but were insufficient to activate cytosolic guanylate cyclase. Nitric oxide did not inhibit neutrophil oxidative burst or degranulation, nor effect beta 2 integrin expression or adherence that did not depend on beta 2 integrins, nor cause oxidative stress identified in terms of cellular glutathione concentration or protein nitrotyrosine. The results indicate that nitric oxide inhibited beta 2 integrins in a concentration-dependent fashion by inhibiting cell-surface transduction of signals linked to the activity of membrane-bound guanylate cyclase. The inhibitory effect could be overcome by providing cells with cyclic GMP exogenously or by stimulating cytosolic guanylate cyclase. Topics: Animals; Atrial Natriuretic Factor; CD18 Antigens; Cell Adhesion; Cell Degranulation; Cyclic GMP; Glutathione; Guanylate Cyclase; Hydrazines; Male; Neutrophils; Nitric Oxide; Nitrogen Oxides; Protein Kinase C; Rats; Rats, Wistar; Respiratory Burst; Tetradecanoylphorbol Acetate; Tyrosine | 1997 |