atractyloside has been researched along with malic-acid* in 6 studies
6 other study(ies) available for atractyloside and malic-acid
Article | Year |
---|---|
Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease.
Discrete morphologic, enzymatic and functional changes in skeletal muscle mitochondria have been demonstrated in patients with peripheral arterial disease (PAD). We examined mitochondrial respiration in the gastrocnemius muscle of nine patients (10 legs) with advanced PAD and in nine control patients (nine legs) without evidence of PAD.. Mitochondrial respiratory rates were determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Muscle samples were obtained from the anteromedial aspect of the gastrocnemius muscle, at a level 10 cm distal to the tibial tuberosity. Mitochondria respiratory rate, calculated as nanoatoms of oxygen consumed per minute per milligram of noncollagen protein, were measured at baseline (V(0)), after addition of substrates (malate and glutamate; (V(SUB)), after addition of adenosine diphosphate (ADP) (V(ADP)), and finally, after adenine nucleotide translocase inhibition with atractyloside (V(AT)). The acceptor control ratio, a sensitive indicator of overall mitochondrial function, was calculated as the ratio of the respiratory rate after the addition of ADP to the respiratory rate after adenine nucleotide translocase inhibition with atractyloside (V(ADP)/ V(AT)).. Respiratory rate in muscle mitochondria from patients with PAD were not significantly different from control values at baseline (0.31 +/- 0.06 vs 0.55 +/- 0.12; P =.09), but V(sub) was significantly lower in patients with PAD compared with control subjects (0.43 +/- 0.07 vs 0.89 +/- 0.20; P <.05), as was V(ADP) (0.69 +/- 0.13 vs 1.24 +/- 0.20; P <.05). Respiratory rates after atractyloside inhibition in patients with PAD were no different from those in control patients (0.47 +/- 0.07 vs 0.45 +/- P =.08). Compared with control values, mitochondria from patients with PAD had a significantly lower acceptor control ratio (1.41 +/- 0.10 vs 2.90 +/- 0.20; P <.001).. Mitochondrial respiratory activity is abnormal in lower extremity skeletal muscle in patients with PAD. When considered in concert with the ultrastructural and enzymatic abnormalities previously documented in mitochondria of chronically ischemic muscle, these data support the concept of defective mitochondrial function as a pathophysiologic component of PAD. Topics: Adenosine Diphosphate; Aged; Atractyloside; Biopsy; Enzyme Inhibitors; Female; Glutamic Acid; Humans; In Vitro Techniques; Intermittent Claudication; Ischemia; Malates; Male; Middle Aged; Mitochondria, Muscle; Mitochondrial ADP, ATP Translocases; Muscle, Skeletal; Oxygen Consumption | 2003 |
The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria.
The roles of mild uncoupling caused by free fatty acids (mediated by plant uncoupling mitochondrial protein (PUMP) and ATP/ADP carrier (AAC)) and non-coupled respiration (alternative oxidase (AO)) on H(2)O(2) formation by plant mitochondria were examined. Both laurate and oleate prevent H(2)O(2) formation dependent on the oxidation of succinate. Conversely, these free fatty acids (FFA) only slightly affect that dependent on malate plus glutamate oxidation. Carboxyatractylate (CAtr), an inhibitor of AAC, completely inhibits oleate- or laurate-stimulated oxygen consumption linked to succinate oxidation, while GDP, an inhibitor of PUMP, caused only a 30% inhibition. In agreement, CAtr completely restores the oleate-inhibited H(2)O(2) formation, while GDP induces only a 30% restoration. Both oleate and laurate cause a mild uncoupling of the electrical potential (generated by succinate), which is then followed by a complete collapse with a sigmoidal kinetic. FFA also inhibit the succinate-dependent reverse electron transfer. Diamide, an inhibitor of AO, favors the malate plus glutamate-dependent H(2)O(2) formation, while pyruvate (a stimulator of AO) inhibits it. These results show that the succinate-dependent H(2)O(2) formation occurs at the level of Complex I by a reverse electron transport. This generation appears to be prevented by mild uncoupling mediated by FFA. The anionic form of FFA appears to be shuttled by AAC rather than PUMP. The malate plus glutamate-dependent H(2)O(2) formation is, conversely, mainly prevented by non-coupled respiration (AO). Topics: Atractyloside; Carrier Proteins; Glutamic Acid; Guanosine Diphosphate; Hydrogen Peroxide; Ion Channels; Lauric Acids; Malates; Membrane Proteins; Mitochondria; Mitochondrial ADP, ATP Translocases; Mitochondrial Proteins; Oleic Acid; Oxidation-Reduction; Oxidative Phosphorylation; Oxygen Consumption; Pisum sativum; Succinic Acid; Uncoupling Agents; Uncoupling Protein 1 | 2000 |
Abnormal mitochondrial respiration in failed human myocardium.
Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Topics: Adult; Atractyloside; Endocardium; Enzyme Inhibitors; Female; Glutamic Acid; Heart Failure; Heart Ventricles; Humans; Malates; Male; Middle Aged; Mitochondria; Myocardium; Oxygen Consumption; Phosphorylation | 2000 |
[Participation of SH-groups in regulating oxidative phosphorylation by malate and palmitate-uncoupled respiration in liver mitochondria].
The effect of malate on respiration in liver mitochondria has been studied during oxidation of succinate in the presence of rotenone both in state 3 and after palmitate addition. Malate was shown to stimulate the rate of mitochondrial respiration in the both respiratory states, its effect being increased in the presence of the NAD-dependent substrates of oxidation-glutamate and pyruvate or thiols (cysteine and thiourea) Preincubation of mitochondria for 5 min in the absence of respiratory substrates eliminated the stimulating effect of malate. However, this effect was manifested in the conditions when the NAD-dependent respiratory substrates or thiols were added after preincubation of mitochondria. p-Chloromercuribenzoate eliminated the stimulating effect of malate. Carboxyatractyloside and ATP inhibited mitochondrial respiration in the presence of palmitate. Malate did not influence the action of the first effector but eliminated that of the second effector. It is concluded that malate can regulate oxidative phosphorylation and palmitate-uncoupled respiration by affecting the adenine nucleotide transported. The SH-groups localized outside the mitochondria in the hydrophilic region play an important role in the realization of malate effects. Topics: Adenosine Triphosphate; Animals; Atractyloside; Electron Transport; Malates; Mitochondria, Liver; Oxidative Phosphorylation; Palmitic Acid; Palmitic Acids; Rats; Sulfhydryl Compounds | 1995 |
Inhibition of rat heart mitochondrial respiration by cadmium chloride.
Mitochondria were isolated from hearts obtained from adult male Sprague-Dawley rats by two-part differential centrifugation of heart homogenates. Time-dependent (0-120 sec) and concentration-dependent (0-10 microM CdCl2) effects of cadmium on pyruvate-malate-supported state 3 and state 4 respiration were measured in a constant temperature reaction chamber at 37 degrees C, according to established procedures. The ID50 for cadmium chloride on state 3 respiration was determined to be 4.2 microM. The inhibition produced by cadmium chloride in heart mitochondria was compared, using identical procedures, to the effects induced by two compounds, sodium atractyloside and potassium cyanide, which are known to alter mitochondrial respiration at specific sites. The calculated ID50 values for these agents in heart mitochondria were 1.8 and 16 microM, respectively. The concentration-dependent inhibition of mitochondrial respiration induced by either cadmium chloride or potassium cyanide was maintained in the presence of 50 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP), a known uncoupling agent. In contrast, sodium atractyloside did not block the uncoupling effect of 50 microM CCCP. In addition cadmium chloride was also shown to inhibit CCCP-uncoupled mitochondrial respiration. The cadmium-induced inhibition of mitochondrial respiration was reversed partially by cysteine and completely by 2,3-dimercaptopropanol. The results of the present study indicate that, at all concentrations, cadmium chloride acted solely as an inhibitor of rat heart pyruvate-malate-supported mitochondrial respiration. These findings suggest a possible mechanism for the reported disturbances in myocardial metabolism and function that occur in conjunction with acute and chronic cadmium exposure in humans and experimental animals. Topics: Animals; Atractyloside; Cadmium; Cadmium Chloride; Cysteine; Dimercaprol; In Vitro Techniques; Malates; Male; Mitochondria, Heart; Oxygen Consumption; Potassium Cyanide; Pyruvates; Pyruvic Acid; Rats; Rats, Inbred Strains | 1987 |
Determination of the P/2e- stoichiometries at the individual coupling sites in mitochondrial oxidative phosphorylation. Evidence for maximum values of 1.0, 0.5, and 1.0 at sites 1, 2, and 3.
P/2e- stoichiometries in six assay systems spanning different portions of the respiratory chain were estimated by direct determinations of Pi uptake in suspensions of bovine heart mitochondria containing a hexokinase trap. The electron donors were malate + pyruvate, succinate, and ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine, and the electron acceptors were ferricyanide (Site 1, Site 2, and Sites 1 + 2) and O2 (Sites 1 + 2 + 3, Sites 2 + 3, and Site 3). A major objective was to find conditions in which the six systems yield results in sufficiently good agreement to allow confidence as to their reliability. This objective was achieved, and maximum values of 1.1, 0.5, and 1.0 were observed in the Sites 1, 2, and 3 systems, respectively. This required that the energy-conserving reactions be relatively nonlimiting and that the P/2e- ratios be estimated from the slopes of plots of respiration rate versus phosphorylation rate obtained by inhibiting oxidative phosphorylation with respiratory chain inhibitors. The latter requirement allows avoidance of the effect of an apparent endogenous uncoupler and is based on the observation (Tsou, C. S., and Van Dam, K. (1969) Biochim. Biophys. Acta 172, 174-176) that uncoupling agents at low concentrations decrease the rate of phosphorylation nearly as much in absolute amount at low rates of respiration as at high rates. The maximum P/2e- stoichiometry at Site 1 is considered to be 1.0, and the value observed in the Site 1 system is suggested to be higher as a result of H+ ejection at the transhydrogenase level. Respiratory control due to carboxyatractyloside inhibition was examined and found to differ greatly among the systems. It is pointed out that this observation is not consistent with the lack of complete control being due primarily to ion cycling and that, in view of this, the relatively meager control at Site 3 is not consistent with O2 being reduced on the matrix side of the coupling membrane. Topics: Animals; Ascorbic Acid; Atractyloside; Cattle; Electron Transport; Ferricyanides; Malates; Mitochondria, Heart; Oxidative Phosphorylation; Oxygen Consumption; Phosphates; Pyruvates; Pyruvic Acid; Succinates; Succinic Acid; Tetramethylphenylenediamine; Uncoupling Agents | 1987 |