atractyloside has been researched along with lauric-acid* in 3 studies
3 other study(ies) available for atractyloside and lauric-acid
Article | Year |
---|---|
Effects of cold exposure in vivo and uncouplers and recouplers in vitro on potato tuber mitochondria.
Effects of cold exposure in vivo and treatment with laurate, carboxyatractylate, atractylate, nucleotides, and BSA in vitro on potato tuber mitochondria have been studied. Cold exposure of tubers for 48-96 h resulted in some uncoupling that could be reversed completely by BSA and partially by ADP, ATP, UDP, carboxyatractylate, and atractylate. UDP was less effective than ADP and ATP, and atractylate was less effective than carboxyatractylate. The recoupling effects of nucleotides were absent when the nucleotides were added after carboxyatractylate. GDP, UDP, and CDP did not recouple mitochondria from either the control or the cold-exposed tubers. This indicates that the cold-induced fatty acid-mediated uncoupling in potato tuber mitochondria is partially due to the operation of the ATP/ADP antiporter. As to the plant uncoupling protein, its contribution to the uncoupling in tuber is negligible or, under the conditions used, somehow desensitized to nucleotides. Topics: Adaptation, Physiological; Adenosine Diphosphate; Atractyloside; Carrier Proteins; Cold Temperature; Enzyme Inhibitors; Guanosine Diphosphate; Intracellular Membranes; Ion Channels; Lauric Acids; Membrane Potentials; Membrane Proteins; Mitochondria; Mitochondrial Proteins; Oxygen Consumption; Serum Albumin, Bovine; Solanum tuberosum; Uncoupling Protein 1 | 2002 |
The role of mild uncoupling and non-coupled respiration in the regulation of hydrogen peroxide generation by plant mitochondria.
The roles of mild uncoupling caused by free fatty acids (mediated by plant uncoupling mitochondrial protein (PUMP) and ATP/ADP carrier (AAC)) and non-coupled respiration (alternative oxidase (AO)) on H(2)O(2) formation by plant mitochondria were examined. Both laurate and oleate prevent H(2)O(2) formation dependent on the oxidation of succinate. Conversely, these free fatty acids (FFA) only slightly affect that dependent on malate plus glutamate oxidation. Carboxyatractylate (CAtr), an inhibitor of AAC, completely inhibits oleate- or laurate-stimulated oxygen consumption linked to succinate oxidation, while GDP, an inhibitor of PUMP, caused only a 30% inhibition. In agreement, CAtr completely restores the oleate-inhibited H(2)O(2) formation, while GDP induces only a 30% restoration. Both oleate and laurate cause a mild uncoupling of the electrical potential (generated by succinate), which is then followed by a complete collapse with a sigmoidal kinetic. FFA also inhibit the succinate-dependent reverse electron transfer. Diamide, an inhibitor of AO, favors the malate plus glutamate-dependent H(2)O(2) formation, while pyruvate (a stimulator of AO) inhibits it. These results show that the succinate-dependent H(2)O(2) formation occurs at the level of Complex I by a reverse electron transport. This generation appears to be prevented by mild uncoupling mediated by FFA. The anionic form of FFA appears to be shuttled by AAC rather than PUMP. The malate plus glutamate-dependent H(2)O(2) formation is, conversely, mainly prevented by non-coupled respiration (AO). Topics: Atractyloside; Carrier Proteins; Glutamic Acid; Guanosine Diphosphate; Hydrogen Peroxide; Ion Channels; Lauric Acids; Malates; Membrane Proteins; Mitochondria; Mitochondrial ADP, ATP Translocases; Mitochondrial Proteins; Oleic Acid; Oxidation-Reduction; Oxidative Phosphorylation; Oxygen Consumption; Pisum sativum; Succinic Acid; Uncoupling Agents; Uncoupling Protein 1 | 2000 |
Involvement of aspartate/glutamate antiporter in uncoupling effect of fatty acids in heart mitochondria.
Earlier it was shown that fatty acid-induced uncoupling in liver mitochondria is suppressed by the substrates of the aspartate/glutamate antiporter (V. N. Samartsev, A. V. Smirnov, I. P. Zeldi, O. V. Markova, E. N. Mokhova, and V. P. Skulachev (1997) Biochim. Biophys. Acta, 1319, 251-257). In this study it is shown that in heart mitochondria aspartate, glutamate, and diethyl pyrocarbonate do not affect oxygen consumption and membrane potential in the presence of laurate at pH 7.4. These compounds have a weak (versus carboxyatractylate) coupling effect at pH 7.0. This effect is manifested only in the presence of carboxyatractylate, magnesium, and phosphate in the incubation medium. It is suggested that these tissue-specific effects are due not only to the specific characteristics of aspartate/glutamate antiporter, but also to the differences in the content of endogenous metabolites in heart mitochondria. Topics: Animals; Antiporters; Aspartic Acid; Atractyloside; Diethyl Pyrocarbonate; Fatty Acids; Glutamic Acid; Hydrogen-Ion Concentration; In Vitro Techniques; Lauric Acids; Membrane Potentials; Mitochondria, Heart; Oxygen Consumption; Rats; Uncoupling Agents | 1998 |