atenolol has been researched along with rolipram in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 1 (16.67) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Axe, FU; Bembenek, SD; Butler, CR; Coles, F; Dunford, PJ; Edwards, JP; Fourie, AM; Grice, CA; Karlsson, L; Lundeen, K; Riley, JP; Savall, BM; Tays, KL; Wei, J; Williams, KN; Xue, X | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
An, B; Hu, J; Huang, L; Li, X; Li, Z; Pan, T | 1 |
Balliano, TL; Barbosa, G; Carvalho, VF; da Silva, BA; de Souza, ET; Lima, LM; Martins, IRR; Martins, MA; Medeiros, MM; Moraes Junior, MO; Nunes, IKDC; Silva, PMR; Silva, SWD | 1 |
Lugnier, C; Muller, B; Stoclet, JC | 1 |
6 other study(ies) available for atenolol and rolipram
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Identification of a potent, selective, and orally active leukotriene a4 hydrolase inhibitor with anti-inflammatory activity.
Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Catalysis; Dogs; Drug Evaluation, Preclinical; Enzyme Inhibitors; Epoxide Hydrolases; Humans; Magnetic Resonance Spectroscopy; Mice; Structure-Activity Relationship | 2008 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Aminopyridines; Animals; Benzamides; Clioquinol; Cyclic Nucleotide Phosphodiesterases, Type 4; Cyclopropanes; Drug Design; Humans; Ligands; Mice; Rats; Rolipram | 2019 |
Discovery of sulfonyl hydrazone derivative as a new selective PDE4A and PDE4D inhibitor by lead-optimization approach on the prototype LASSBio-448: In vitro and in vivo preclinical studies.
Topics: Animals; Cyclic AMP; Cyclic Nucleotide Phosphodiesterases, Type 4; Drug Design; Enzyme Inhibitors; Humans; Hydrazones; Hypersensitivity; Lung; Male; Mice | 2020 |
Involvement of rolipram-sensitive cyclic AMP phosphodiesterase in the regulation of cardiac contraction.
Topics: 3',5'-Cyclic-AMP Phosphodiesterases; 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone; Animals; Atenolol; Calcium Chloride; Colforsin; Guinea Pigs; In Vitro Techniques; Male; Myocardial Contraction; Phosphodiesterase Inhibitors; Pyrazines; Pyrrolidinones; Reserpine; Rolipram; Stereoisomerism; Xanthines | 1990 |