atenolol and bucladesine

atenolol has been researched along with bucladesine in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19905 (50.00)18.7374
1990's3 (30.00)18.2507
2000's0 (0.00)29.6817
2010's2 (20.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Daries, PS; Lubbe, WF; Opie, LH; Podzuweit, T1
Dandona, P; DeSouza, V; Gill, J; Jeremy, JY; Wakeling, A1
Brown, MJ; Hall, JA; Kaumann, AJ1
Arita, M; Kiyosue, T; Ono, K1
Negita, S; Tsuru, H1
Frohman, EM; Gupta, S; van den Noort, S; Vayuvegula, B1
Aoki, K; Dohi, Y; Fujimoto, S; Matsuda, T1
Kemp, GJ; Odoom, JE; Radda, GK1

Other Studies

10 other study(ies) available for atenolol and bucladesine

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
The role of cyclic adenosine monophosphate in adrenergic effects on ventricular vulnerability to fibrillation in the isolated perfused rat heart.
    The Journal of clinical investigation, 1978, Volume: 61, Issue:5

    Topics: Adenosine Triphosphate; Animals; Atenolol; Bucladesine; Cyclic AMP; Epinephrine; Myocardium; Phosphocreatine; Rats; Theophylline; Ventricular Fibrillation

1978
Differential changes in alpha- and beta-adrenoceptor linked [45Ca2+] uptake in platelets from patients with anorexia nervosa.
    The Journal of clinical endocrinology and metabolism, 1992, Volume: 74, Issue:2

    Topics: Adolescent; Adrenergic beta-Antagonists; Adult; Anorexia Nervosa; Atenolol; Blood Platelets; Bucladesine; Calcium; Calcium Radioisotopes; Epinephrine; Female; Humans; In Vitro Techniques; Isoproterenol; Kinetics; Norepinephrine; Propanolamines; Receptors, Adrenergic, beta; Reference Values; Yohimbine

1992
Selective beta 1-adrenoceptor blockade enhances positive inotropic responses to endogenous catecholamines mediated through beta 2-adrenoceptors in human atrial myocardium.
    Circulation research, 1990, Volume: 66, Issue:6

    Topics: Adrenergic beta-Antagonists; Albuterol; Atenolol; Biomechanical Phenomena; Bucladesine; Catecholamines; Epinephrine; Female; Heart Atria; Humans; Male; Myocardial Contraction; Myocardium

1990
Isoproterenol, DBcAMP, and forskolin inhibit cardiac sodium current.
    The American journal of physiology, 1989, Volume: 256, Issue:6 Pt 1

    Topics: Animals; Atenolol; Bucladesine; Colforsin; Electric Conductivity; Guinea Pigs; Heart; Heart Ventricles; In Vitro Techniques; Isoproterenol; Kinetics; Membrane Potentials; Sodium Channels; Ventricular Function

1989
Heterogeneity of beta-adrenoceptor in canine veins: comparison among the facial, portal and saphenous veins.
    Japanese journal of pharmacology, 1989, Volume: 51, Issue:3

    Topics: Adenylyl Cyclases; Adrenergic beta-Agonists; Adrenergic beta-Antagonists; Animals; Atenolol; Bucladesine; Catecholamines; Colforsin; Dogs; Ethanolamines; Face; Isoproterenol; Male; Portal Vein; Procaterol; Propanolamines; Propranolol; Receptors, Adrenergic, beta; Saphenous Vein; Veins

1989
Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms.
    Proceedings of the National Academy of Sciences of the United States of America, 1988, Volume: 85, Issue:4

    Topics: Animals; Antigen-Presenting Cells; Astrocytes; Atenolol; Brain; Bucladesine; Cells, Cultured; Dipyridamole; Gene Expression Regulation; Histocompatibility Antigens Class II; Interferon-gamma; Isoproterenol; Norepinephrine; Phentolamine; Propranolol; Rats; Rats, Inbred Lew; Receptors, Adrenergic, beta

1988
Altered vascular beta adrenoceptor-mediated relaxation in deoxycorticosterone-salt hypertensive rats.
    The Journal of pharmacology and experimental therapeutics, 1988, Volume: 244, Issue:2

    Topics: Animals; Atenolol; Bucladesine; Butoxamine; Desoxycorticosterone; Fenoterol; Hypertension; Isoproterenol; Male; Norepinephrine; Papaverine; Rats; Rats, Inbred Strains; Receptors, Adrenergic, beta; Sodium Chloride; Vasodilation

1988
The regulation of total creatine content in a myoblast cell line.
    Molecular and cellular biochemistry, 1996, May-24, Volume: 158, Issue:2

    Topics: Animals; Atenolol; Bucladesine; Butoxamine; Cell Line; Clenbuterol; Creatine; Energy Metabolism; Insulin; Insulin-Like Growth Factor I; Isoproterenol; Labetalol; Methoxamine; Mice; Muscle, Skeletal; Norepinephrine; Phentolamine; Propranolol; Sodium; Triiodothyronine

1996