astringin has been researched along with 3-3--4-5--tetrahydroxystilbene* in 5 studies
5 other study(ies) available for astringin and 3-3--4-5--tetrahydroxystilbene
Article | Year |
---|---|
Comparison of Ferroptosis-Inhibitory Mechanisms between Ferrostatin-1 and Dietary Stilbenes (Piceatannol and Astringin).
Synthetic arylamines and dietary phytophenolics could inhibit ferroptosis, a recently discovered regulated cell death process. However, no study indicates whether their inhibitory mechanisms are inherently different. Herein, the ferroptosis-inhibitory mechanisms of selected ferrostatin-1 (Fer-1) and two dietary stilbenes (piceatannol and astringin) were compared. Cellular assays suggested that the ferroptosis-inhibitory and electron-transfer potential levels decreased as follows: Fer-1 >> piceatannol > astringin; however, the hydrogen-donating potential had an order different from that observed by the antioxidant experiments and quantum chemistry calculations. Quantum calculations suggested that Fer-1 has a much lower ionization potential than the two stilbenes, and the aromatic N-atoms were surrounded by the largest electron clouds. By comparison, the C4'O-H groups in the two stilbenes exhibited the lowest bond disassociation enthalpies. Finally, the three were found to produce corresponding dimer peaks through ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis. In conclusion, Fer-1 mainly depends on the electron transfer of aromatic N-atoms to construct a redox recycle. However, piceatannol and astringin preferentially donate hydrogen atoms at the 4'-OH position to mediate the conventional antioxidant mechanism that inhibits ferroptosis, and to ultimately form dimers. These results suggest that dietary phytophenols may be safer ferroptosis inhibitors for balancing normal and ferroptotic cells than arylamines with high electron-transfer potential. Topics: Animals; Antioxidants; Cyclic N-Oxides; Cyclohexylamines; Diet; Ferroptosis; Glucosides; Imidazoles; Inhibitory Concentration 50; Male; Mesenchymal Stem Cells; Models, Molecular; Phenylenediamines; Piperazines; Rats, Sprague-Dawley; Static Electricity; Stilbenes | 2021 |
Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin.
Recent investigations have revealed that, in addition to monolignols, some phenolic compounds derived from the flavonoid and hydroxystilbene biosynthetic pathways can also function as true lignin monomers in some plants. In this study, we found that the hydroxystilbene glucosides isorhapontin (isorhapontigenin- Topics: Glucosides; Lignin; Magnetic Resonance Spectroscopy; Models, Chemical; Molecular Structure; Norway; Picea; Plant Bark; Resveratrol; Stilbenes | 2019 |
Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5.
The flavin-dependent monooxygenase Sam5 was previously reported to be a bifunctional hydroxylase with a coumarte 3-hydroxylase and a resveratrol 3'-hydroxylase activity. In this article, we showed the Sam5 enzyme has 3'-hydroxylation activities for methylated resveratrol (pinostilbene and pterostilbene), hydroxylated resveratrol (oxyresveratrol) and glycosylated resveratrol (piceid) as substrates. However, the use of piceid, a glycone type stilbene, as a substrate for bioconversion experiments with the Sam5 enzyme expressed in, Topics: Dinitrocresols; Escherichia coli; Flavins; Glucosides; Hydroxylation; Mixed Function Oxygenases; Plant Extracts; Resveratrol; Stilbenes | 2018 |
Stilbene biosynthesis in the needles of spruce Picea jezoensis.
Stilbenes are valuable phenolic compounds that are synthesized in plants via the phenylpropanoid pathway where stilbene synthase (STS) directly catalyzes resveratrol or pinosylvin formation. Currently, there is a lack of information about the stilbene biosynthetic pathway in spruce (Picea). Resveratrol and piceatannol derivatives have been detected in the spruce bark, needles, and roots. We analyzed seasonal variation in stilbene spectrum and content in the needles of different ages of one tree of spruce Picea jezoensis. HPLC analysis revealed the presence of nine stilbenes: t- and cis-astringin, t- and cis-piceid, t- and cis-isorhapontin, and t-piceatannol were present in amounts of 0.01-6.07 mg/g of dry weight (DW), while t-isorhapontigenin and t-resveratrol were present in traces (0.001-0.312 μg/g DW). T-astringin prevailed over other stilbenoid compounds (66-86% of all stilbenes). The highest total stilbene content was detected in one-year-old needles collected in the autumn and spring (5.4-7.77 mg/g DW). We previously cloned and sequenced full-length cDNAs of the four STS transcripts (PjSTS1a, PjSTS1b, PjSTS2, and PjSTS3) of P. jezoensis. This study presents a detailed analysis of seasonal variations in PjSTS1a, 1b, 2, and 3 transcript levels in the needles of P. jezoensis of different ages using qRT-PCR. PjSTS1a and PjSTS1b transcription was higher in the needles collected in the autumn, spring, or summer than in the winter. PjSTS2 was actively transcribed in the needles of all ages collected in the winter, spring, and summer. PjSTS3 expression did not significantly change during the year and did not depend on the age of the needles. Therefore, the data show that high levels of the stilbene glucosides and PjSTS expression are present in the needles of P. jezoensis. Topics: Acyltransferases; Glucosides; Phenols; Picea; Plant Bark; Plant Roots; Resveratrol; Stilbenes | 2016 |
Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection.
The roots of three varieties of Polygonum cuspidatum were analyzed for resveratrol and its analogs. The powder of the dried roots was extracted with aqueous ethanol (60% v/v) and the extracts obtained were analyzed using RP HPLC with coulometric detection. A simple HPLC method with a multichannel CoulArray detector was developed for the determination of four stilbenes: resveratrol, its glucoside piceid, piceatannol, and its glucoside astringin. Analyses were carried out on a LiChrospher C18 (125 x 4.6 mm id, particle size 5 microm) column with a mobile phase of ammonium acetate (pH 3) and ACN in gradient mode. Four compounds were monitored by a CoulArray electrochemical detector. Potentials of eight electrochemical cells in series were set in the range of 200-900 mV. Optimization of the mobile phase pH was performed. Calibration curves showed good linearity with correlation coefficients (r(2))--more than 0.9975. Topics: Chromatography, High Pressure Liquid; Electrochemistry; Fallopia japonica; Glucosides; Hydrogen-Ion Concentration; Plant Roots; Resveratrol; Stilbenes | 2008 |