astemizole and fluvoxamine

astemizole has been researched along with fluvoxamine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's5 (83.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Freiwald, S; Jiang, Y; Jones, JP; Kaspera, R; Katayama, J; Lee, CA; Smith, E; Totah, RA; Walker, GS1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chu, I; Margulis, M; Nomeir, AA; Priestley, T; Soares, A; Sorota, S1

Other Studies

6 other study(ies) available for astemizole and fluvoxamine

ArticleYear
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:5

    Topics: Amiodarone; Astemizole; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Danazol; Drug Discovery; Drug Interactions; Enzyme Inhibitors; Humans; Hydroxylation; In Vitro Techniques; Methylation; Microsomes, Liver; Models, Biological; Molecular Structure; Substrate Specificity; Tandem Mass Spectrometry; Terfenadine

2012
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Protein binding-dependent decreases in hERG channel blocker potency assessed by whole-cell voltage clamp in serum.
    Journal of cardiovascular pharmacology, 2010, Volume: 55, Issue:4

    Topics: Amiodarone; Animals; Astemizole; Blood Proteins; Cattle; Cell Line; Cisapride; Dialysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Fluvoxamine; Humans; Ion Channel Gating; Mice; Patch-Clamp Techniques; Potassium Channel Blockers; Protein Binding; Serum; Sodium Chloride; Thioridazine; Transfection

2010