aspirin has been researched along with thioguanine anhydrous in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (11.11) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (22.22) | 29.6817 |
2010's | 5 (55.56) | 24.3611 |
2020's | 1 (11.11) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Bender, A; Czobor, P; Jelinek, B; Málnási-Csizmadia, A; Peragovics, Á; Simon, Z; Tombor, L; Végner, L | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Jones, LH; Nadanaciva, S; Rana, P; Will, Y | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Fischer, J; Jahn, U; Wagner-Jauregg, T | 1 |
1 review(s) available for aspirin and thioguanine anhydrous
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
8 other study(ies) available for aspirin and thioguanine anhydrous
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Experimental confirmation of new drug-target interactions predicted by Drug Profile Matching.
Topics: Algorithms; Angiotensin-Converting Enzyme Inhibitors; Animals; CHO Cells; Cricetulus; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Molecular Conformation; Molecular Targeted Therapy; Peptidyl-Dipeptidase A; Receptors, Dopamine D1; Receptors, Dopamine D2; Structure-Activity Relationship; Substrate Specificity | 2013 |
Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
Topics: Adenosine Triphosphate; Benzbromarone; Cell Line; Cell Survival; Chromans; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Humans; Pharmaceutical Preparations; Thiazolidinediones; Troglitazone | 2016 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
[Cytostatic antiphlogistics. II. Antimicrobial activity range and comparison in the Oedipus test].
Topics: Animals; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antineoplastic Agents; Aspirin; Azaguanine; Azathioprine; Bacteria; Benzimidazoles; Depression, Chemical; Edema; Enterococcus faecalis; Flufenamic Acid; Fungi; Indomethacin; Lactobacillus; Mefenamic Acid; Mercaptopurine; Oxyphenbutazone; Phenylbutazone; Purines; Pyrimethamine; Rats; Riboflavin; Salicylates; Staphylococcus; Tetracycline; Thioguanine | 1970 |