Page last updated: 2024-09-03

asiatic acid and betulin

asiatic acid has been researched along with betulin in 6 studies

Compound Research Comparison

Studies
(asiatic acid)
Trials
(asiatic acid)
Recent Studies (post-2010)
(asiatic acid)
Studies
(betulin)
Trials
(betulin)
Recent Studies (post-2010) (betulin)
28932324228287

Protein Interaction Comparison

ProteinTaxonomyasiatic acid (IC50)betulin (IC50)
Transcription factor p65Homo sapiens (human)8.8

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's4 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Alexacou, KM; Cheng, K; Gimisis, T; Hao, J; Hayes, JM; Leonidas, DD; Liu, J; Ni, P; Oikonomakos, NG; Sun, H; Wen, X; Zhang, L; Zhang, P; Zographos, SE1
Abdel Bar, FM; Ahmad, KF; Bachawal, SV; El Sayed, KA; Sylvester, PW; Zaghloul, AM1
Auwerx, J; Boudjelal, G; Genet, C; Lobstein, A; Saladin, R; Schmidt, C; Schoonjans, K; Souchet, M; Strehle, A; Wagner, A1
Chen, J; Chen, L; Cheng, K; Gong, Y; Hao, J; Jiang, H; Li, H; Li, L; Liang, Z; Liu, H; Liu, J; Luo, C; Sun, H; Wen, X; Zhang, L; Zhang, P; Zhang, X; Zheng, M; Zhu, X1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Dong, YS; Sun, WL; Wen, C; Xing, Y; Xiu, ZL; Yu, XX; Zhang, BW1

Other Studies

6 other study(ies) available for asiatic acid and betulin

ArticleYear
Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: synthesis, structure-activity relationships, and X-ray crystallographic studies.
    Journal of medicinal chemistry, 2008, Jun-26, Volume: 51, Issue:12

    Topics: Adenosine Monophosphate; Allosteric Site; Animals; Binding Sites; Crystallography, X-Ray; Glycogen Phosphorylase; Hypoglycemic Agents; Kinetics; Models, Molecular; Muscles; Oleanolic Acid; Pentacyclic Triterpenes; Protein Binding; Protein Conformation; Rabbits; Stereoisomerism; Structure-Activity Relationship; Triterpenes

2008
Antiproliferative triterpenes from Melaleuca ericifolia.
    Journal of natural products, 2008, Volume: 71, Issue:10

    Topics: Animals; Drug Screening Assays, Antitumor; Egypt; Melaleuca; Mice; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plant Leaves; Plants, Medicinal; Triterpenes

2008
Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes.
    Journal of medicinal chemistry, 2010, Jan-14, Volume: 53, Issue:1

    Topics: 3T3-L1 Cells; Animals; Betulinic Acid; CHO Cells; Cricetinae; Cricetulus; Male; Mice; Mice, Inbred C57BL; Molecular Conformation; Pentacyclic Triterpenes; Receptors, G-Protein-Coupled; Stereoisomerism; Structure-Activity Relationship; Triterpenes

2010
Identification of pentacyclic triterpenes derivatives as potent inhibitors against glycogen phosphorylase based on 3D-QSAR studies.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:6

    Topics: Animals; Enzyme Inhibitors; Glycogen Phosphorylase, Muscle Form; Models, Molecular; Molecular Conformation; Muscle, Skeletal; Pentacyclic Triterpenes; Quantitative Structure-Activity Relationship; Rabbits; Stereoisomerism

2011
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose.
    Bioorganic & medicinal chemistry letters, 2017, 11-15, Volume: 27, Issue:22

    Topics: Acarbose; alpha-Amylases; alpha-Glucosidases; Drug Synergism; Inhibitory Concentration 50; Kinetics; Oleanolic Acid; Pentacyclic Triterpenes; Structure-Activity Relationship; Triterpenes

2017