Page last updated: 2024-09-04

asenapine and haloperidol

asenapine has been researched along with haloperidol in 12 studies

Compound Research Comparison

Studies
(asenapine)
Trials
(asenapine)
Recent Studies (post-2010)
(asenapine)
Studies
(haloperidol)
Trials
(haloperidol)
Recent Studies (post-2010) (haloperidol)
2655020920,3301,7533,294

Protein Interaction Comparison

ProteinTaxonomyasenapine (IC50)haloperidol (IC50)
Adenylate cyclase type 1 Rattus norvegicus (Norway rat)2.3
Voltage-dependent L-type calcium channel subunit alpha-1CCavia porcellus (domestic guinea pig)1.7
Voltage-dependent L-type calcium channel subunit alpha-1FHomo sapiens (human)1.5
5-hydroxytryptamine receptor 4Cavia porcellus (domestic guinea pig)1.6765
Potassium channel subfamily K member 2Homo sapiens (human)5.5
Aldo-keto reductase family 1 member B1Rattus norvegicus (Norway rat)1.836
ATP-dependent translocase ABCB1Homo sapiens (human)5.3
Muscarinic acetylcholine receptor M1Rattus norvegicus (Norway rat)0.054
Muscarinic acetylcholine receptor M3Rattus norvegicus (Norway rat)0.054
Muscarinic acetylcholine receptor M4Rattus norvegicus (Norway rat)0.054
Cytochrome P450 3A4Homo sapiens (human)0.055
5-hydroxytryptamine receptor 1AHomo sapiens (human)1.5
5-hydroxytryptamine receptor 2CRattus norvegicus (Norway rat)0.1754
Muscarinic acetylcholine receptor M5Rattus norvegicus (Norway rat)0.054
Muscarinic acetylcholine receptor M5Homo sapiens (human)3.89
Alpha-2A adrenergic receptorHomo sapiens (human)4.973
Beta-2 adrenergic receptorRattus norvegicus (Norway rat)2.3
Muscarinic acetylcholine receptor M2Rattus norvegicus (Norway rat)0.054
Muscarinic acetylcholine receptor M1Homo sapiens (human)5.5
Cytochrome P450 2C9 Homo sapiens (human)4.69
Angiotensin-converting enzymeOryctolagus cuniculus (rabbit)7
D(2) dopamine receptorHomo sapiens (human)0.0897
5-hydroxytryptamine receptor 2ARattus norvegicus (Norway rat)0.1467
Alpha-1B adrenergic receptorRattus norvegicus (Norway rat)0.0852
Alpha-2B adrenergic receptorHomo sapiens (human)1.354
Alpha-2C adrenergic receptorHomo sapiens (human)1.845
DRattus norvegicus (Norway rat)0.1103
D(3) dopamine receptorRattus norvegicus (Norway rat)0.0067
5-hydroxytryptamine receptor 1ARattus norvegicus (Norway rat)4.3045
D(2) dopamine receptorBos taurus (cattle)0.1332
D(1A) dopamine receptorHomo sapiens (human)0.0575
D(4) dopamine receptorHomo sapiens (human)0.0978
D(1B) dopamine receptorHomo sapiens (human)0.005
Adenylate cyclase type 3Rattus norvegicus (Norway rat)2.3
Alpha-1D adrenergic receptorRattus norvegicus (Norway rat)0.0852
Sodium-dependent noradrenaline transporter Homo sapiens (human)1.836
Histamine H2 receptorHomo sapiens (human)1.166
Alpha-1D adrenergic receptorHomo sapiens (human)0.084
D(1B) dopamine receptorRattus norvegicus (Norway rat)0.0067
Adenylate cyclase type 2Rattus norvegicus (Norway rat)2.3
Adenylate cyclase type 4Rattus norvegicus (Norway rat)2.3
5-hydroxytryptamine receptor 2AHomo sapiens (human)0.1815
5-hydroxytryptamine receptor 2CHomo sapiens (human)3.347
5-hydroxytryptamine receptor 1BRattus norvegicus (Norway rat)0.018
5-hydroxytryptamine receptor 1DRattus norvegicus (Norway rat)0.018
D(4) dopamine receptorRattus norvegicus (Norway rat)0.0067
5-hydroxytryptamine receptor 1FRattus norvegicus (Norway rat)0.018
5-hydroxytryptamine receptor 2BRattus norvegicus (Norway rat)0.1754
Sodium-dependent serotonin transporterHomo sapiens (human)3.386
Histamine H1 receptorHomo sapiens (human)2.781
Mu-type opioid receptorHomo sapiens (human)2.443
D(3) dopamine receptorHomo sapiens (human)0.0065
Sodium channel protein type 1 subunit alphaHomo sapiens (human)7
Sodium channel protein type 4 subunit alphaHomo sapiens (human)7
Adenylate cyclase type 8Rattus norvegicus (Norway rat)2.3
5-hydroxytryptamine receptor 2BHomo sapiens (human)2.05
Alpha-1A adrenergic receptorRattus norvegicus (Norway rat)0.0852
Cytochrome P450 2J2Homo sapiens (human)4.69
D(2) dopamine receptorRattus norvegicus (Norway rat)0.0129
N-acetyltransferase EisMycobacterium tuberculosis H37Rv0.39
Sodium channel protein type 7 subunit alphaHomo sapiens (human)7
Voltage-dependent L-type calcium channel subunit alpha-1D Homo sapiens (human)1.5
Adenylate cyclase type 6Rattus norvegicus (Norway rat)2.3
Adenylate cyclase type 5Rattus norvegicus (Norway rat)1.425
Potassium voltage-gated channel subfamily H member 2Homo sapiens (human)0.2634
Voltage-dependent L-type calcium channel subunit alpha-1SHomo sapiens (human)1.5
Voltage-dependent L-type calcium channel subunit alpha-1CHomo sapiens (human)1.5
Sodium channel protein type 5 subunit alphaHomo sapiens (human)7
Sodium channel protein type 9 subunit alphaHomo sapiens (human)7
Adenylyl cyclase 7 Rattus norvegicus (Norway rat)2.3
DBos taurus (cattle)0.2509
Sodium channel protein type 2 subunit alphaHomo sapiens (human)7
Sigma non-opioid intracellular receptor 1Homo sapiens (human)0.07
Sodium channel protein type 3 subunit alphaHomo sapiens (human)7
Sigma non-opioid intracellular receptor 1Rattus norvegicus (Norway rat)0.0013
Sodium channel protein type 11 subunit alphaHomo sapiens (human)7
Sodium channel protein type 8 subunit alphaHomo sapiens (human)7
Sodium channel protein type 10 subunit alphaHomo sapiens (human)7

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (25.00)18.2507
2000's1 (8.33)29.6817
2010's6 (50.00)24.3611
2020's2 (16.67)2.80

Authors

AuthorsStudies
De Loore, K; Gommeren, W; Janssen, PF; Lesage, AS; Leysen, JE; Luyten, WH; Schotte, A; Van Gompel, P1
Audinot, V; Chaput, C; Conte, C; Gavaudan, S; Millan, MJ; Newman-Tancredi, A; Touzard, M; Verrièle, L1
Shahid, M; Walker, GB; Wong, EH; Zorn, SH1
Broekkamp, CL; De Graaf, JS; van Delft, AM1
Alphs, L; Cohen, M; Kane, JM; Panagides, J; Zhao, J1
Leucht, S; Zhao, J1
Castle, DJ; Slott Jensen, JK1
Avagliano, C; Buonaguro, EF; de Bartolomeis, A; Eramo, A; Iasevoli, F; Latte, G; Marmo, F; Tomasetti, C1
Altamura, AC; Buoli, M; Caldiroli, A; Esposito, CM; Godio, M; Serati, M1
Foute Nelong, T; Manduca, JD; Perreault, ML; Zonneveld, PM1
Avagliano, C; Barone, A; Buonaguro, EF; de Bartolomeis, A; Eramo, A; Iasevoli, F; Vellucci, L1
Cao, D; Hong, Y; Huang, W; Wang, L; Wei, H; Xu, J; Zhang, J1

Reviews

2 review(s) available for asenapine and haloperidol

ArticleYear
Early improvement as a predictor of treatment response and remission in patients with schizophrenia: a pooled, post-hoc analysis from the asenapine development program.
    Journal of psychopharmacology (Oxford, England), 2014, Volume: 28, Issue:4

    Topics: Antipsychotic Agents; Benzodiazepines; Dibenzocycloheptenes; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Humans; Olanzapine; Psychiatric Status Rating Scales; Randomized Controlled Trials as Topic; Remission Induction; Risperidone; Schizophrenia; Sensitivity and Specificity; Treatment Outcome

2014
A cumulative Bayesian network meta-analysis on the comparative efficacy of pharmacotherapies for mania over the last 40 years.
    Psychopharmacology, 2022, Volume: 239, Issue:10

    Topics: Adult; Antimanic Agents; Antipsychotic Agents; Aripiprazole; Benzodiazepines; Carbamazepine; Dibenzocycloheptenes; Haloperidol; Humans; Lithium; Mania; Network Meta-Analysis; Olanzapine; Paliperidone Palmitate; Pharmaceutical Preparations; Piperazines; Quetiapine Fumarate; Risperidone; Tamoxifen; Thiazoles; Valproic Acid

2022

Trials

3 trial(s) available for asenapine and haloperidol

ArticleYear
Efficacy and safety of asenapine in a placebo- and haloperidol-controlled trial in patients with acute exacerbation of schizophrenia.
    Journal of clinical psychopharmacology, 2010, Volume: 30, Issue:2

    Topics: Acute Disease; Adult; Akathisia, Drug-Induced; Dibenzocycloheptenes; Double-Blind Method; Female; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Humans; Male; Parkinsonian Disorders; Schizophrenia; Treatment Outcome

2010
Management of depressive symptoms in schizophrenia.
    Clinical schizophrenia & related psychoses, 2015, Volume: 9, Issue:1

    Topics: Adolescent; Adult; Antipsychotic Agents; Benzodiazepines; Depressive Disorder, Major; Dibenzocycloheptenes; Double-Blind Method; Female; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Humans; Male; Middle Aged; Olanzapine; Psychiatric Status Rating Scales; Randomized Controlled Trials as Topic; Risperidone; Schizophrenia; Schizophrenic Psychology; Treatment Outcome; Young Adult

2015
Have antipsychotics a different speed of action in the acute treatment of mania? A single-blind comparative study.
    Journal of psychopharmacology (Oxford, England), 2017, Volume: 31, Issue:12

    Topics: Adult; Antipsychotic Agents; Benzodiazepines; Bipolar Disorder; Dibenzocycloheptenes; Female; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Humans; Male; Middle Aged; Olanzapine; Single-Blind Method; Time Factors; Treatment Outcome

2017

Other Studies

7 other study(ies) available for asenapine and haloperidol

ArticleYear
Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding.
    Psychopharmacology, 1996, Volume: 124, Issue:1-2

    Topics: Animals; Antipsychotic Agents; Brain; Cells, Cultured; Clozapine; Haloperidol; Humans; Male; Rats; Rats, Wistar; Receptors, Dopamine; Receptors, Serotonin; Risperidone

1996
Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.
    European journal of pharmacology, 1998, Aug-21, Volume: 355, Issue:2-3

    Topics: Animals; Antipsychotic Agents; CHO Cells; Cricetinae; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Receptors, Serotonin; Receptors, Serotonin, 5-HT1; Serotonin Agents; Sulfur Radioisotopes

1998
Asenapine: a novel psychopharmacologic agent with a unique human receptor signature.
    Journal of psychopharmacology (Oxford, England), 2009, Volume: 23, Issue:1

    Topics: Benzodiazepines; Bipolar Disorder; Clinical Trials as Topic; Cloning, Molecular; Clozapine; Dibenzocycloheptenes; Heterocyclic Compounds, 4 or More Rings; Histamine Release; Humans; Inhibitory Concentration 50; Molecular Structure; Olanzapine; Psychotropic Drugs; Radioligand Assay; Receptors, Adrenergic; Receptors, Dopamine; Receptors, Dopamine D2; Receptors, Muscarinic; Receptors, Serotonin; Schizophrenia; Substrate Specificity

2009
Behavioural pharmacology of trans-5-chloro-2-methyl-2,3,3a,12b-tetrahydro- 1H-dibenz[2,3:6,7]oxepino-[4,5-c]pyrrolidine maleate, a compound interacting with dopaminergic and serotonergic receptors.
    Arzneimittel-Forschung, 1990, Volume: 40, Issue:5

    Topics: Animals; Antipsychotic Agents; Avoidance Learning; Behavior, Animal; Catalepsy; Chlorpromazine; Clozapine; Conflict, Psychological; Dibenzocycloheptenes; Dibenzoxepins; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Male; Mice; Mice, Inbred ICR; Motor Activity; Rats; Rats, Inbred Strains; Receptors, Dopamine; Receptors, Serotonin; Stereotyped Behavior

1990
Re-arrangements of gene transcripts at glutamatergic synapses after prolonged treatments with antipsychotics: A putative link with synaptic remodeling.
    Progress in neuro-psychopharmacology & biological psychiatry, 2017, 06-02, Volume: 76

    Topics: Animals; Antipsychotic Agents; Benzodiazepines; Cerebral Cortex; Dibenzocycloheptenes; Disks Large Homolog 4 Protein; Gene Expression; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Male; Neostriatum; Nerve Tissue Proteins; Neuronal Plasticity; Olanzapine; Post-Synaptic Density; Rats; Rats, Sprague-Dawley

2017
Asenapine maleate normalizes low frequency oscillatory deficits in a neurodevelopmental model of schizophrenia.
    Neuroscience letters, 2019, 10-15, Volume: 711

    Topics: Animals; Antipsychotic Agents; Brain; Clozapine; Delta Rhythm; Dibenzocycloheptenes; Disease Models, Animal; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Rats; Rats, Sprague-Dawley; Schizophrenia

2019
The Effects of Antipsychotics on the Synaptic Plasticity Gene
    International journal of molecular sciences, 2020, Aug-03, Volume: 21, Issue:15

    Topics: Animals; Antipsychotic Agents; Brain; Brain Mapping; Dibenzocycloheptenes; Dose-Response Relationship, Drug; Duration of Therapy; Haloperidol; Heterocyclic Compounds, 4 or More Rings; Homer Scaffolding Proteins; Humans; In Situ Hybridization; Models, Animal; Neuronal Plasticity; Olanzapine; Post-Synaptic Density; Rats; Tissue Distribution

2020