ascorbic-acid has been researched along with violaxanthin* in 6 studies
6 other study(ies) available for ascorbic-acid and violaxanthin
Article | Year |
---|---|
Identification and Quantification of Phytochemicals, Antioxidant Activity, and Bile Acid-Binding Capacity of Garnet Stem Dandelion (Taraxacum officinale).
Dandelion (Taraxacum officinale) var. Garnet Stem was harvested from Texas and New Jersey for identification, quantification of phytochemicals, measurement of free radical scavenging activity, and bile acid binding capacity. The red midrib and petioles were extracted with methanol or ethanol and with or without water in combination with four different acids such as formic, hydrochloric, acetic, and citric acid. LC-ESI-HR-QTOF-MS was used to identify four anthocyanins including cyanidin-3-glucoside, cyanidin-3-(6-malonyl)-glucoside (A-1), cyanidin-3-(6-malonyl)-glucoside (A-2), and peonidin-3-(malonyl)-glucoside for the 1st time. In New Jersey samples, vitamin C and β-carotene were highest in the leaf blades versus whole leaf and petioles. Samples from Texas had highest amount of lutein, violaxanthin, and chlorophyll a and b in leaf blades versus whole leaf and petioles. Maximum DPPH free scavenging activity was found in MeOH: water: acid (80:19:1) and the combination of FA with EtOH: water: acid (80:19:1) demonstrated the higher level of total phenolic. Among six bile acids, sodium chenodeoxycholate was bound maximum in both Texas and New Jersey samples. This is the first report of anthocyanin identification from the midvein and petiole of Garnet Stem dandelion and results suggested that the phytochemicals and nutrients are highest in the leaf but may vary the amount depending on harvest location.. Four anthocyanins in the red midrib and petioles of Garnet Stem could be a potential source for antioxidants and can be used as a source of natural food color. Topics: Anthocyanins; Antioxidants; Ascorbic Acid; beta Carotene; Bile Acids and Salts; Chenodeoxycholic Acid; Chlorophyll; Chlorophyll A; Glucosides; Lutein; New Jersey; Phytochemicals; Plant Leaves; Plant Stems; Taraxacum; Texas; Xanthophylls | 2018 |
A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.
Plants adjust their photosynthetic activity to changing light conditions. A central regulation of photosynthesis depends on the xanthophyll cycle, in which the carotenoid violaxanthin is converted into zeaxanthin in strong light, thus activating the dissipation of the excess absorbed energy as heat and the scavenging of reactive oxygen species. Violaxanthin deepoxidase (VDE), the enzyme responsible for zeaxanthin synthesis, is activated by the acidification of the thylakoid lumen when photosynthetic electron transport exceeds the capacity of assimilatory reactions: at neutral pH, VDE is a soluble and inactive enzyme, whereas at acidic pH, it attaches to the thylakoid membrane where it binds its violaxanthin substrate. VDE also uses ascorbate as a cosubstrate with a pH-dependent Km that may reflect a preference for ascorbic acid. We determined the structures of the central lipocalin domain of VDE (VDEcd) at acidic and neutral pH. At neutral pH, VDEcd is monomeric with its active site occluded within a lipocalin barrel. Upon acidification, the barrel opens up and the enzyme appears as a dimer. A channel linking the two active sites of the dimer can harbor the entire carotenoid substrate and thus may permit the parallel deepoxidation of the two violaxanthin beta-ionone rings, making VDE an elegant example of the adaptation of an asymmetric enzyme to its symmetric substrate. Topics: Amino Acid Sequence; Arabidopsis; Ascorbic Acid; Crystallography, X-Ray; Gene Expression Regulation, Plant; Hydrogen-Ion Concentration; Models, Molecular; Molecular Sequence Data; Oxidoreductases; Photosynthesis; Protein Multimerization; Protein Structure, Secondary; Protein Structure, Tertiary; Sequence Homology, Amino Acid; Substrate Specificity; Thylakoids; Xanthophylls; Zeaxanthins | 2009 |
Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
As a response to high light, plants have evolved non-photochemical quenching (NPQ), mechanisms that lead to the dissipation of excess absorbed light energy as heat, thereby minimizing the formation of dangerous oxygen radicals. One component of NPQ is pH dependent and involves the formation of zeaxanthin from violaxanthin. The enzyme responsible for the conversion of violaxanthin to zeaxanthin is violaxanthin de-epoxidase, which is located in the thylakoid lumen, is activated by low pH, and has been shown to use ascorbate (vitamin C) as its reductant in vitro. To investigate the effect of low ascorbate levels on NPQ in vivo, we measured the induction of NPQ in a vitamin C-deficient mutant of Arabidopsis, vtc2-2. During exposure to high light (1,500 micromol photons m(-2) s(-1)), vtc2-2 plants initially grown in low light (150 micromol photons m(-2) s(-1)) showed lower NPQ than the wild type, but the same quantum efficiency of photosystem II. Crosses between vtc2-2 and Arabidopsis ecotype Columbia established that the ascorbate deficiency cosegregated with the NPQ phenotype. The conversion of violaxanthin to zeaxanthin induced by high light was slower in vtc2-2, and this conversion showed saturation below the wild-type level. Both the NPQ and the pigment phenotype of the mutant could be rescued by feeding ascorbate to leaves, establishing a direct link between ascorbate, zeaxanthin, and NPQ. These experiments suggest that ascorbate availability can limit violaxanthin de-epoxidase activity in vivo, leading to a lower NPQ. The results also demonstrate the interconnectedness of NPQ and antioxidants, both important protection mechanisms in plants. Topics: Arabidopsis; Ascorbic Acid; beta Carotene; Electron Transport; Hydrogen-Ion Concentration; Light; Models, Chemical; Mutation; Oxidoreductases; Photochemistry; Photosynthetic Reaction Center Complex Proteins; Photosystem II Protein Complex; Plant Leaves; Thylakoids; Xanthophylls; Zeaxanthins | 2002 |
Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum.
Guard cells of the orchid genus, Paphiopedilum have been reported to lack developed chloroplasts and detectable chlorophyll a autofluorescence. Paphiopedilum stomata lack a photosynthesis-dependent opening response but have a blue light-specific opening. The present study found that low fluence rate green and red light elicited stomatal opening in Paphiopedilum and this opening was reversed by far red light, indicating the presence of a phytochrome-mediated opening response. Phytochrome-dependent, red light-stimulated opening was largest under low fluence rates and decreased to near zero as fluence rate increased. A recently discovered green light reversibility of blue light-specific stomatal opening was used to probe the properties of the blue light response in Paphiopedilum stomata. Blue light-stimulated opening was completely reversed by green light in the presence of far red light. Red light enhanced the blue light response of Paphiopedilum guard cells when given as a pretreatment or together with blue light. Analysis of guard cell pigments showed that guard cells have small amounts of chlorophyll a and b, zeaxanthin, violaxanthin, antheraxanthin and lutein. Zeaxanthin content increased in response to blue light or ascorbate and declined in the dark or under illumination in the presence of dithiothreitol, indicating the presence of an active xanthophyll cycle. Thus Paphiopedilum stomata possess both a blue light-mediated opening response with characteristics similar to species with normal chloroplast development and a novel phytochrome-mediated opening response. Topics: Adaptation, Physiological; Ascorbic Acid; beta Carotene; Chlorophyll; Chlorophyll A; Dithiothreitol; Light; Lutein; Orchidaceae; Photosynthesis; Phytochrome; Pigments, Biological; Plant Epidermis; Xanthophylls; Zeaxanthins | 2002 |
Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
Infiltrating detached maize (Zea mays L.) leaves with L-galactono-1,4-lactone (L-GAL) resulted in a 4-fold increase in the content of leaf ascorbate. Upon exposure to high irradiance (1000 mumol photons m-2 s-1) at 5 degrees C, L-GAL leaves de-epoxidized the xanthophyll-cycle pigments faster than the control leaves; the maximal ratio of de-epoxidized xanthophyll-cycle pigments to the whole xanthophyll-cycle pool was the same in both leaf types. The elevated ascorbate content, together with the faster violaxanthin de-epoxidation, did not affect the degree of photoinhibition and the kinetics of the recovery from photoinhibition, assayed by monitoring the maximum quantum efficiency of photosystem II primary photochemistry (Fv/Fm). Under the experimental conditions, the thermal energy dissipation seems to be zeaxanthin-independent since, in contrast to the de-epoxidation, the decrease in the efficiency of excitation-energy capture by open photosystem II reaction centers (F'v/F'm) during the high-irradiance treatment at low temperature showed the same kinetic in both leaf types. This was also observed for the recovery of the maximal fluorescence after stress. Furthermore, the elevated ascorbate content did not diminish the degradation of pigments or alpha-tocopherol when leaves were exposed for up to 24 h to high irradiance at low temperature. Moreover, a higher content of ascorbate appeared to increase the requirement for reduced glutathione. Topics: Ascorbic Acid; beta Carotene; Chlorophyll; Chlorophyll A; Cold Temperature; Energy Metabolism; Light; Light-Harvesting Protein Complexes; Oxidative Stress; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Photosystem II Protein Complex; Pigments, Biological; Plant Leaves; Sugar Acids; Xanthophylls; Zea mays; Zeaxanthins | 2000 |
Responses of the xanthophyll cycle pool and ascorbate-glutathione cycle to ozone stress in two tobacco cultivars.
Plants of Nicotiana tabacum (O3-tolerant cv Bel-B and O3-sensitive cv Bel-W3) were exposed to 150 ppb of ozone for 5 h; the fumigation produced visual injury in mature leaves, particularly in Bel-W3. After O3-treatment the pigments of the xanthophyll cycle pool decreased in both cvs, with a strong reduction in violaxanthin content, while antheraxanthin and zeaxanthin increased slightly. Under these conditions the content of leaf abscisic acid (ABA) markedly increased, particularly in O3-sensitive cv, indicating that the violaxanthin may have been partially converted into ABA. The control plants of Bel-B showed an ascorbic acid content four times greater than Bel-W3 and the ozone treatment did not produce significant differences in the ascorbic acid content and in the redox state. The two tobacco cvs were found to have similar total glutathione content, however the redox state was lower in O3-sensitive cv and decreased after ozone exposure. Ozone fumigation caused an increase in oxidized glutathione, particularly in Bel-W3, associated with a reduced glutathione reductase (GR) activity and a reduced GR protein content. Topics: Ascorbic Acid; beta Carotene; Carotenoids; Free Radicals; Glutathione; Glutathione Reductase; Lutein; Nicotiana; Oxidative Stress; Ozone; Pigments, Biological; Plant Leaves; Plants, Toxic; Xanthophylls; Zeaxanthins | 1999 |