ascorbic-acid and vanillin

ascorbic-acid has been researched along with vanillin* in 12 studies

Other Studies

12 other study(ies) available for ascorbic-acid and vanillin

ArticleYear
Natural additives to preserve quality and improve nutritional value of fresh-cut nectarine.
    Food science and technology international = Ciencia y tecnologia de los alimentos internacional, 2016, Volume: 22, Issue:5

    There is currently a high demand for natural and fresh-cut fruits. In this study, natural additives were applied to fresh-cut nectarines: (1) control, nontreated; (2) wedges were dipped in an antibrowning solution containing calcium ascorbate (AB); (3) and (4) wedges were dipped in an AB plus natural antimicrobial agents (vanillin or cinnamic acid, respectively). After these treatments, fresh-cut nectarines were packed and stored at 5 ℃ for eight days. The treatments AB+Vanillin and AB+Cinnamic inhibited microbial counts when compared with control and AB-only samples. The application of these solutions did not impart any aromas or off-flavors to nectarines and maintained firmness during the shelf-life period. AB solutions inhibited polyophenol oxidase action and reduced browning while stabilizing the soluble phenolic content, increasing consumer's acceptance. Nectarine wedges assimilated the ascorbic acid from the AB solution and retained it during the shelf-life period. The combination of an antibrowning agent and natural antimicrobials helped to control microbiological growth while maintaining high-quality parameters. They can be an attractive "green" alternative for organic fresh-cut products to other chemical sanitizers such as chlorine.

    Topics: Anti-Infective Agents; Ascorbic Acid; Benzaldehydes; Catechol Oxidase; Cinnamates; Colony Count, Microbial; Consumer Behavior; Food Additives; Food Preservation; Fruit; Humans; Maillard Reaction; Nutritive Value; Prunus persica; Solutions

2016
Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.
    Journal of microbiology (Seoul, Korea), 2016, Volume: 54, Issue:10

    This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.

    Topics: Acrolein; Ascorbic Acid; Basidiomycota; Benzaldehydes; Culture Media; Lignin; Molecular Structure; Molecular Weight; Phenols; Phenylpropionates; Polymerization; Reducing Agents

2016
1,5-Diarylpyrazole and vanillin hybrids: Synthesis, biological activity and DFT studies.
    European journal of medicinal chemistry, 2015, Jul-15, Volume: 100

    Herein, we report the design and synthesis of 13 diarylpyrazole hybrids with vanillin constructed as dual compounds against oxidative stress and diabetes. Compounds were tested in two different antioxidant assays. It was found that all compounds showed an important antioxidant activity in both DPPH and ORAC models and the activity was even more remarkable than vanillin. In addition, the hypoglycemic effect of compounds 1, 2, 4 and 12 was evaluated. Interestingly, compound 1 had the most potent hypoglycemic effect with a glycemia reduction of 71%, which was higher than rimonabant. Finally, a DFT study to propose a reasonable antioxidant mechanism is detailed. Both thermodynamic and kinetic studies indicated that the most feasible mechanism consists in the HAT abstraction of the phenolic hydrogen due to the formation of an stable transition state through the most rapid and exergonic path, while the SPLET mechanism is the most significant at higher pH values.

    Topics: Animals; Antioxidants; Benzaldehydes; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Hypoglycemia; Hypoglycemic Agents; Molecular Structure; Oxidative Stress; Pyrazoles; Quantum Theory; Rats; Structure-Activity Relationship

2015
Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase.
    Bioorganic & medicinal chemistry, 2015, Sep-01, Volume: 23, Issue:17

    The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 μM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 μM) and Ki' (53 μM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies.

    Topics: Agaricales; Benzaldehydes; Enzyme Inhibitors

2015
Synthesis and antioxidant evaluation of (S,S)- and (R,R)-secoisolariciresinol diglucosides (SDGs).
    Bioorganic & medicinal chemistry letters, 2013, Oct-01, Volume: 23, Issue:19

    Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50=292.17±27.71 μM and 331.94±21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50=275.24±13.15 μM). These values are significantly lower than those of ascorbic acid (EC50=1129.32±88.79 μM) and α-tocopherol (EC50=944.62±148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68±0.27; synthetic (S,S)-SDG-1: 2.09±0.16; synthetic (R,R)-SDG-2: 1.96±0.27], peroxyl [natural (S,S)-SDG-1: 2.55±0.11; synthetic (S,S)-SDG-1: 2.20±0.10; synthetic (R,R)-SDG-2: 3.03±0.04] and DPPH [natural (S,S)-SDG-1: EC50=83.94±2.80 μM; synthetic (S,S)-SDG-1: EC50=157.54±21.30 μM; synthetic (R,R)-SDG-2: EC50=123.63±8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.

    Topics: Antioxidants; Benzaldehydes; Butylene Glycols; Flax; Free Radical Scavengers; Glucosides; Molecular Structure

2013
Increased significance of food wastes: selective recovery of added-value compounds.
    Food chemistry, 2012, Dec-15, Volume: 135, Issue:4

    A single-step selective separation of two food additives was investigated using alcohol-salt aqueous two-phase systems (ATPS). The selective partitioning of two of the most used additives from a processed food waste material, vanillin and l-ascorbic acid, was successfully accomplished. The results obtained prove that alcohol-salt ATPS can be easily applied as cheaper processes for the selective recovery of valuable chemical products from food wastes and other sources. As a first approach, the phase diagrams of ATPS composed of different alcohol+inorganic salt+water were determined at 298 (± 1)K and atmospheric pressure. The influence of methanol, ethanol, 1-propanol, and 2-propanol and K(3)PO(4), K(2)HPO(4) or KH(2)PO(4)/K(2)HPO(4) in the design of the phase diagrams was addressed. After the evaluation of the phase diagrams behaviour, the influence of the phase forming constituents was assessed towards the partition coefficients and recovery percentages of vanillin and l-ascorbic acid among the coexisting phases. Both model systems and real processed food waste materials were employed. Using these ATPS as partitioning systems it is possible to recover and separate vanillin, which migrates for the alcohol-rich phase, from l-ascorbic acid, which preferentially partitions for the salt-rich phase.

    Topics: Ascorbic Acid; Benzaldehydes; Chemical Fractionation; Waste Products

2012
Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays.
    Biochimica et biophysica acta, 2011, Volume: 1810, Issue:2

    Vanillin, a compound widely used in foods, beverages, cosmetics and drugs, has been reported to exhibit multifunctional effects such as antimutagenic, antiangiogenetic, anti-colitis, anti-sickling, and antianalgesic effects. However, results of studies on the antioxidant activity of vanillin are not consistent.. We systematically evaluated the antioxidant activity of vanillin using multiple assay systems. DPPH radical-, galvinoxyl radical-, and ABTS(+)-scavenging assays, ORAC assay and an oxidative hemolysis inhibition assay (OxHLIA) were used for determining the antioxidant activity.. Vanillin showed stronger activity than did ascorbic acid and Trolox in the ABTS(+)-scavenging assay but showed no activity in the DPPH radical- and galvinoxyl radical-scavenging assays. Vanillin showed much stronger antioxidant activity than did ascorbic acid and Trolox in the ORAC assay and OxHLIA. In the ABTS(+)-scavenging assay, ORAC assay and OxHLIA, vanillin reacted with radicals via a self-dimerization mechanism. The dimerization contributed to the high reaction stoichiometry against ABTS(+) and AAPH-derived radicals to result in the strong effect of vanillin. Oral administration of vanillin to mice increased the vanillin concentration and the antioxidant activity in plasma. These data suggested that antioxidant activity of vanillin might be more beneficial than has been thought for daily health care.. Based on the results of the present study, we propose the addition of antioxidant capacity to the multifunctionality of vanillin.

    Topics: Animals; Antioxidants; Ascorbic Acid; Benzaldehydes; Benzhydryl Compounds; Benzothiazoles; Biphenyl Compounds; Chromans; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Erythrocytes; Free Radical Scavengers; Hemolysis; Mice; Molecular Structure; Oxidation-Reduction; Picrates; Sheep; Sulfonic Acids

2011
Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.).
    Journal of food science, 2011, Volume: 76, Issue:4

    The raspberry (Rubus idaeus L.) is an economically important berry crop that contains many phenolic compounds with potential health benefits. In this study, important pomological features, including nutrient content and antioxidant properties, of a domesticated and 3 wild (Yayla, Yavuzlar, and Yedigöl) raspberry fruits were evaluated. Also, the amount of total phenolics and flavonoids in lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits were calculated as gallic acid equivalents (GAEs) and quercetin equivalents (QE). The highest phenolic compounds were found in wild Yayla ecotype (26.66 ± 3.26 GAE/mg extract). Whilst, the highest flavonoids were determined in wild Yedigöl ecotype (6.09 ± 1.21 QA/mg extract). The antioxidant activity of lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits were investigated as trolox equivalents using different in vitro assays including DPPH(•), ABTS(•+), DMPD(•+), and O(•-)(2) radical scavenging activities, H(2)O(2) scavenging activity, ferric (Fe(3+)) and cupric ions (Cu(2+)) reducing abilities, ferrous ions (Fe(2+)) chelating activity. In addition, quantitative amounts of caffeic acid, ferulic acid, syringic acid, ellagic acid, quercetin, α-tocopherol, pyrogallol, p-hydroxybenzoic acid, vanillin, p-coumaric acid, gallic acid, and ascorbic acid in lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits were detected by high-performance liquid chromatography and tandem mass spectrometry (LC-MS-MS). The results clearly show that p-coumaric acid is the main phenolic acid responsible for the antioxidant and radical scavenging activity of lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits.

    Topics: Antioxidants; Ascorbic Acid; Benzaldehydes; Benzothiazoles; Chromatography, High Pressure Liquid; Coumaric Acids; Ecotype; Ellagic Acid; Fruit; Gallic Acid; Hydrogen Peroxide; Hydroxybenzoates; Plant Extracts; Polyphenols; Propionates; Pyrogallol; Rosaceae; Sulfonic Acids; Tandem Mass Spectrometry

2011
[Superoxide dismutase biosensor for screening substances possessing scavenging superoxide anion activity].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2004, Volume: 39, Issue:6

    To establish a method for screening active substance with scavenging effects on superoxide anion in vitro by designed superoxide dismutase biosensor.. The enzyme sensor was built by connecting the immobilized CuZnSOD with optical oxygen sensor through a special way. Superoxide anions were generated by auto-oxidation of pyrogallol. The auto-oxidation speed was examined before and after adding samples into the system, and the Vit C having the scavenging radical activities was served as a positive control.. The limit of biosensor detection was 7.0 U in activity, and lifetime of the immobilized enzyme in the reaction-cell was above 2 weeks. The scavenging effects on superoxide radicals of fifteen active substance were studied in vitro by the sensor, and some of them presented scavenging activities.. The signal from biosensor is stable, easy to be determined, and the kinetic information on scavenging superoxide radicals could be obtained directly. The biosensor system can be used for screening drugs simply and rapidly.

    Topics: Ascorbic Acid; Benzaldehydes; Biosensing Techniques; Caffeic Acids; Enzymes, Immobilized; Free Radical Scavengers; Pyrogallol; Superoxide Dismutase

2004
Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization.
    Molecular and cellular biochemistry, 2000, Volume: 209, Issue:1-2

    Using rat liver mitochondria, as model systems, we have examined the ability of the natural compound and the food-flavoring agent, vanillin to protect membranes against oxidative damage induced by photosensitization at concentrations normally used in food preparations. Vanillin, at a concentration of 2.5 mmol/L, has afforded significant protection against protein oxidation and lipid peroxidation in hepatic mitochondria induced by photosensitization with methylene blue plus light. The effect observed was both time- and concentration-dependent. The inhibitory effect is similar to ascorbic acid and the singlet oxygen quencher, diazabicyclo[2.2.2]octane (DABCO) but less effective than sodium azide and glutathione. Examination of possible mechanisms responsible for the observed protection, showed that vanillin has a significant ability to quench singlet oxygen (1O2), a reactive species responsible for damage induced during photosensitization by Type II mechanism. Hence, this flavoring compound, due to its antioxidant ability, may have potential to prevent oxidative damage to membranes in mammalian tissues and thereby the ensuing diseased states.

    Topics: Animals; Antioxidants; Ascorbic Acid; Benzaldehydes; Female; Flavoring Agents; Kinetics; Light; Lipid Peroxidation; Methylene Blue; Mitochondria, Liver; Oxidation-Reduction; Photosensitizing Agents; Proteins; Rats; Rats, Wistar

2000
Evaluation of the SOS chromotest for the detection of antimutagens.
    Environmental and molecular mutagenesis, 1991, Volume: 17, Issue:4

    The SOS chromotest was applied for the detection of antimutagens. To raise SOS induction, the bacteria were treated with the mutagens, UV, 4-nitroquinoline N-oxide (4NQO), N-methyl-N'-nitro-N-nitroso-guanidine (MNNG), or benzo[a]pyrene (B[a]p). The inhibitory effects of L-ascorbic acid, glutathione, vanillin, 5-fluorouracil (5-FU), 5-chlorouracil (5-CU), cobaltous chloride, sodium selenite and sodium arsenite, which are known as antimutagens, were investigated with their addition either simultaneously or post treatment time. It became clear that the SOS chromotest was very useful for the detection of antimutagens.

    Topics: Ascorbic Acid; Benzaldehydes; Colorimetry; Fluorouracil; Glutathione; Mutagenicity Tests; Mutagens; Selenium; Sodium Selenite; SOS Response, Genetics; Uracil

1991
[ANALEPTIC TREATMENT OF THE ALCOHOLIC DELIRIUM].
    Der Nervenarzt, 1964, Volume: 35

    Topics: Ascorbic Acid; Benzaldehydes; Central Nervous System Stimulants; Delirium; Folic Acid; Fructose; Humans; Prednisolone; Psychoses, Alcoholic; Psychotic Disorders; Pyridoxine; Rutin; Sorbitol; Vitamin B 12; Vitamin B Complex; Vitamin K 1

1964
chemdatabank.com