ascorbic-acid and stiripentol

ascorbic-acid has been researched along with stiripentol* in 2 studies

Other Studies

2 other study(ies) available for ascorbic-acid and stiripentol

ArticleYear
NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting "stemness".
    Oncotarget, 2017, Mar-28, Volume: 8, Issue:13

    Here, we assembled a broad molecular "tool-kit" to interrogate the role of metabolic heterogeneity in the propagation of cancer stem-like cells (CSCs). First, we subjected MCF7 cells to "metabolic fractionation" by flow cytometry, using fluorescent mitochondrial probes to detect PCG1α activity, as well ROS and hydrogen-peroxide (H2O2) production; NADH levels were also monitored by auto-fluorescence. Then, the various cell populations were functionally assessed for "stem cell activity", using the mammosphere assay (3D-spheroids). Our results indicate that a sub-population of MCF7 cells, with increased PGC1α activity, high mitochondrial ROS/H2O2 production and high NADH levels, all form mammospheres with a higher efficiency. Thus, it appears that mitochondrial oxidative stress and the anti-oxidant response both contribute to the promotion of mitochondrial biogenesis and oxidative metabolism in CSCs. Further validation was provided by using specific inhibitors to target metabolic processes (the NAD+ salvage pathway, glycolysis, mitochondrial protein synthesis and OXPHOS), significantly reducing CSC propagation. As a consequence, we have now identified a variety of clinically-approved drugs (stiripentol), natural products (caffeic acid phenyl ester (CAPE), ascorbic acid, silibinin) and experimental pharmaceuticals (actinonin, FK866, 2-DG), that can be used to effectively inhibit CSC activity. We discuss the use of CAPE (derived from honey-bee propolis) and Vitamin C, as potential natural therapeutic modalities. In this context, Vitamin C was ~10 times more potent than 2-DG for the targeting of CSCs. Similarly, stiripentol was between 50 to 100 times more potent than 2-DG.

    Topics: Antineoplastic Agents; Ascorbic Acid; Biomarkers, Tumor; Caffeic Acids; Cell Proliferation; Dioxolanes; Flow Cytometry; Humans; MCF-7 Cells; NAD; Neoplastic Stem Cells; Optical Imaging; Phenylethyl Alcohol

2017
Protein-reactive metabolites of carbamazepine in mouse liver microsomes.
    Drug metabolism and disposition: the biological fate of chemicals, 1996, Volume: 24, Issue:5

    The character of reactive metabolites formed from carbamazepine (CBZ) was sought in incubations of [14C]CBZ in hepatic microsomes prepared from adult female mice of a strain (SWV/Fnn) susceptible to CBZ-induced teratogenicity. The formation of radio-labeled protein adducts was used as an index of reactive metabolite exposure. A dependence on cytochrome P450 was shown by a requirement for NADPH and inhibition by carbon monoxide, 1-aminobenzotriazole, piperonyl butoxide, and stiripentol. The addition of ascorbic acid, caffeic acid, N-acetylcysteine, and glutathione decreased the rate of binding of the radiolabel from [14C]CBZ to microsomal protein by more than 50%. The addition of glutathione transferases diminished protein adduct formation beyond that seen with glutathione alone. Evidence for the formation of an arene oxide was sought through the use of inhibitors of epoxide hydrolases, including cyclohexene oxide, chalcone oxides (with the addition of cytosol as appropriate), and by the addition of recombinant human soluble and microsomal epoxide hydrolases and recombinant rat microsomal epoxide hydrolase. The microsomal epoxide hydrolases decreased the velocity of 14C-labeled protein adduct formation by approximately 23%, whereas inhibitors had no effect, most likely because of the low native activity of microsomal epoxide hydrolase in mice. Both DT-diaphorase and catechol-O-methyltransferase diminished 14C-labeled protein adduct formation by 54% and 45%, respectively. The data suggest that the major reactive metabolites formed from CBZ by adult female SWV/Fnn liver microsomes are quinones and arene oxides.

    Topics: Animals; Anticonvulsants; Ascorbic Acid; Caffeic Acids; Carbamazepine; Carbon Monoxide; Catechol O-Methyltransferase; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dioxolanes; Enzyme Inhibitors; Epoxide Hydrolases; Female; Glutathione Transferase; Mice; Mice, Inbred Strains; Microsomes, Liver; NAD(P)H Dehydrogenase (Quinone); NADP; Piperonyl Butoxide; Sulfhydryl Compounds; Triazoles

1996