ascorbic-acid has been researched along with quercitrin* in 2 studies
2 other study(ies) available for ascorbic-acid and quercitrin
Article | Year |
---|---|
Improved assay for determining the total radical-scavenging capacity of antioxidants and foods.
Free radicals play a crucial role in the pathophysiology of human diseases such as cancer, atherosclerosis, and neurodegenerative diseases, and considerable attention has been focused on functional foods (or nutraceuticals) that are able to decrease the concentrations of free radicals and consequently protect against these diseases. The present study investigated an improved quantitative assay to measure antioxidant activity using the stable and fast-reacting chromogenic indicator [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS). The ABTS-radical-scavenging activities of various antioxidants and apple extracts were measured in 96-well plates, and plots thereof were linearly interpolated, with the total radical-scavenging capacity quantified as the area under the curve. The first order of linear regression was obtained in a relationship between the absorbance reduction and various concentrations of the tested sample, and the total radical-scavenging capacity was expressed as the vitamin-C-equivalent antioxidant capacity. The advantages of this quantitative assay are that, first, it is fast, sensitive and confers little variation from experimental errors for single or mixed antioxidants; second, a large number of samples in a low quantity at a time can be run using 96-well plates. Topics: Antioxidants; Ascorbic Acid; Benzothiazoles; Butylated Hydroxyanisole; Chromogenic Compounds; Colorimetry; Food Analysis; Free Radical Scavengers; Humans; Kaempferols; Malus; Plant Extracts; Quercetin; Sulfonic Acids | 2009 |
Gallic acid, a metabolite of the antioxidant propyl gallate, inhibits gap junctional intercellular communication via phosphorylation of connexin 43 and extracellular-signal-regulated kinase1/2 in rat liver epithelial cells.
Propyl gallate and its metabolite, gallic acid, are widely used as antioxidants in the food industry, but they have been shown to exhibit liver toxicity and enhance carcinogenesis. In the present study, we investigated the possible undesirable effects of propyl gallate and gallic acid on gap junctional intercellular communication (GJIC), inhibition of which is closely linked to carcinogenesis. Gallic acid and propyl gallate exhibited dose-dependent free-radical-scavenging activities as determined by 1,1-diphenyl-2-picrylhydrazyl- or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-radical-scavenging assays, and the free-radical-scavenging activity of gallic acid was stronger than that of propyl gallate. However, using WB-F344 rat liver epithelial cells, gallic acid inhibited GJIC in a dose-dependent manner, while propyl gallate had no significant effect compared with untreated controls. The gallic-acid-induced inhibition of GJIC was reversible, with a recovery of nearly 65% after 120 min. Gallic acid induced the phosphorylation of connexin 43 (Cx43) and phosphorylation of extracellular-signal-regulated kinase1/2 (ERK1/2). The gallic-acid-induced inhibition of GJIC was attenuated by treatment with mitogen-activated protein kinase kinase inhibitors (U0126 and PD098059). U0126 blocked the gallic-acid-induced phosphorylation of Cx43 and ERK1/2, indicating that the gallic-acid-induced inhibition of GJIC is mediated by phosphorylation of Cx43 via activation of ERK1/2. In addition, gallic-acid-induced inhibition of GJIC was protected by ascorbic acid and quercetin, which might represent a simple example of the different effects of natural antioxidants in carcinogenesis. Topics: Animals; Ascorbic Acid; Cell Communication; Cells, Cultured; Connexin 43; Epithelial Cells; Free Radicals; Gallic Acid; Gap Junctions; Liver; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 3; Phosphorylation; Propyl Gallate; Quercetin; Rats; Rats, Inbred F344; Signal Transduction | 2008 |