ascorbic-acid has been researched along with potassium-oxonate* in 1 studies
1 other study(ies) available for ascorbic-acid and potassium-oxonate
Article | Year |
---|---|
Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis.
Hyperuricemia contributes to chronic kidney disease development. However, it has been historically viewed with limited research interest. In this study, we mimicked the development of hyperuricemic nephropathy by using a potassium oxonate-induced hyperuricemia rat model. We found that administering vitamin C at 10 mg/kg/day effectively ameliorated hyperuricemic nephropathy. Compared to the control group, rats with hyperuricemia had significantly increased serum uric acid level, xanthine oxidase activity, and urine microalbumin level, by 5-fold, 1.5-fold, and 4-fold, respectively. At the same time, vitamin C supplementation reverted these values by 20% for serum uric acid level and xanthine oxidase activity and 50% for microalbumin level. Vitamin C also alleviated renal pathology and decreased the expression of pro-inflammatory and pro-fibrotic markers. A further mechanistic study suggested that vitamin C might attenuate hyperuricemic nephropathy in renal tubular epithelial cells induced by monosodium urate (MSU) crystal, at least in part, by directly inhibiting IL-6/JAK2/STAT3 signaling pathway. Meanwhile, in macrophages, vitamin C inhibited the expression of TGF-β, and reduced ROS level induced by MSU by about 35%. In short, our results suggest that vitamin C supplementation delay the progression of hyperuricemic nephropathy. Topics: Animals; Antioxidants; Ascorbic Acid; Fibrosis; Hyperuricemia; Inflammation; Kidney Diseases; Male; Oxonic Acid; Rats; Rats, Sprague-Dawley | 2021 |