ascorbic-acid and pirinixic-acid

ascorbic-acid has been researched along with pirinixic-acid* in 3 studies

Other Studies

3 other study(ies) available for ascorbic-acid and pirinixic-acid

ArticleYear
Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo.
    Journal of medicinal chemistry, 2013, Nov-27, Volume: 56, Issue:22

    Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) is currently pursued as potential pharmacological strategy for treatment of inflammation and cancer. Here we present a series of 26 novel 2-aminothiazole-featured pirinixic acid derivatives as dual 5-LO/mPGES-1 inhibitors with improved potency (exemplified by compound 16 (2-[(4-chloro-6-{[4-(naphthalen-2-yl)-1,3-thiazol-2-yl]amino}pyrimidin-2-yl)sulfanyl]octanoic acid) with IC50 = 0.3 and 0.4 μM, respectively) and bioactivity in vivo. Computational analysis presumes binding sites of 16 at the tip of the 5-LO catalytic domain and within a subpocket of the mPGES-1 active site. Compound 16 (10 μM) hardly suppressed cyclooxygenase (COX)-1/2 activities, failed to inhibit 12/15-LOs, and is devoid of radical scavenger properties. Finally, compound 16 reduced vascular permeability and inflammatory cell infiltration in a zymosan-induced mouse peritonitis model accompanied by impaired levels of cysteinyl-leukotrienes and prostaglandin E2. Together, 2-aminothiazole-featured pirinixic acids represent potent dual 5-LO/mPGES-1 inhibitors with an attractive pharmacological profile as anti-inflammatory drugs.

    Topics: Animals; Arachidonate 5-Lipoxygenase; Binding Sites; Drug Design; Humans; Hydrophobic and Hydrophilic Interactions; Inhibitory Concentration 50; Intramolecular Oxidoreductases; Lipoxygenase Inhibitors; Male; Mice; Microsomes; Models, Molecular; Peritonitis; Prostaglandin-E Synthases; Protein Conformation; Pyrimidines; Structure-Activity Relationship; Thiazoles; Zymosan

2013
Effects of peroxisome proliferators on antioxidant enzymes and antioxidant vitamins in rats and hamsters.
    Toxicological sciences : an official journal of the Society of Toxicology, 2001, Volume: 60, Issue:2

    Peroxisome proliferators (PPs) cause hepatomegaly, peroxisome proliferation, and hepatocarcinogenesis in rats and mice, whereas hamsters are less responsive to PPs. PPs increase the activities of enzymes involved in peroxisomal beta-oxidation and omega-hydroxylation of fatty acids, which has been hypothesized to result in oxidative stress. The hypothesis of this study was that differential modulation of antioxidant enzymes and vitamins might account for differences in species susceptibility to PPs. Accordingly, we measured the activities of DT-diaphorase and superoxide dismutase (SOD) and the hepatic content of ascorbic acid and alpha-tocopherol in male Sprague-Dawley rats and Syrian hamsters fed 2 doses of 3 known peroxisome proliferators (dibutyl phthalate [DBP], gemfibrozil, and [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,643) for 6, 34, or 90 days. In untreated animals, the activity of DT-diaphorase was much higher in hamsters than in rats, but the control levels of SOD, ascorbic acid and alpha-tocopherol were similar. In rats and hamsters treated with Wy-14,643, we observed decreases in alpha-tocopherol content and total SOD activity. DT-diaphorase was decreased in activity following Wy-14,643 treatment in rats at all time points and doses, but only sporadically affected in hamsters. Rats and hamsters treated with DBP demonstrated increased SOD activity at 6 days; however, in the rat, DBP decreased SOD activity at 90 days and alpha-tocopherol content was decreased throughout. In gemfibrozil treated rats and hamsters, a decrease in alpha-tocopherol content and an increase in DT-diaphorase activity were observed. In either species, no consistent trend was observed in total ascorbic acid content after treatment with any of the PPs. In conclusion, these data suggest that both rats and hamsters are compromised in antioxidant capabilities following PP treatment and additional hypotheses for species susceptibility should be considered.

    Topics: Animals; Antioxidants; Ascorbic Acid; Cricetinae; Dibutyl Phthalate; Gemfibrozil; Liver; Male; Mesocricetus; NAD(P)H Dehydrogenase (Quinone); Peroxisome Proliferators; Pyrimidines; Rats; Rats, Sprague-Dawley; Species Specificity; Superoxide Dismutase; Vitamin E

2001
Effects of a peroxisomal proliferator (PP) on plasma and tissue levels of coenzyme Q9 (CoQ), other antioxidants, and oxidative damage to DNA (oxo8dG): evidence that PPs deplete antioxidants and increase oxidative damage to DNA.
    Molecular aspects of medicine, 1994, Volume: 15 Suppl

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Ascorbic Acid; Body Composition; Deoxyguanosine; DNA Damage; Male; Microbodies; Organ Specificity; Oxidation-Reduction; Oxidative Stress; Pyrimidines; Rats; Rats, Inbred F344; Ubiquinone; Uric Acid; Vitamin E

1994