ascorbic-acid has been researched along with phenyl-2-aminoethyl-sulfide* in 1 studies
1 other study(ies) available for ascorbic-acid and phenyl-2-aminoethyl-sulfide
Article | Year |
---|---|
Effects of dopamine beta-monooxygenase substrate analogs on ascorbate levels and norepinephrine synthesis in adrenal chromaffin granule ghosts.
Chromaffin granule ghosts from bovine adrenal medullae have been used to investigate the effects of prototypic dopamine beta-monooxygenase substrate analogs of two distinct classes on intravesicular reduced ascorbic acid (AscH2) levels and on norepinephrine synthesis. Phenyl-2-aminoethyl sulfide (PAES), a sulfur-containing substrate, was shown to concentrate within ghosts, a process that was time and ATP dependent, but reserpine insensitive. Dopamine beta-monooxygenase oxygenation of PAES resulted in accumulation of the oxygenation product, PAESO, without affecting intravesicular levels of AscH2. Similarly, incubations of ghosts with phenyl-2-aminoethyl selenide (PAESe) also resulted in rapid, time- and ATP-dependent, but reserpine-insensitive uptake. However, oxygenation of PAESe by dopamine beta-monooxygenase within ghosts was found to cause a marked decrease in intravesicular AscH2, without buildup of the oxygenated product, phenyl 2-aminoethyl selenoxide. These results illustrate two basic differences between the consequences of PAES and PAESe turnover: while PAES accumulation proceeds concomitant with PAESO production and without AscH2 depletion, PAESe accumulation proceeds with a marked lowering of internal AscH2 but without observable product formation. Both PAES and PAESe were capable of competing with dopamine, the physiological substrate, for enzymatic oxygenation and/or vesicular uptake, and were capable of significantly reducing norepinephrine synthesis. In experiments where ghosts were preincubated with either PAES or PAESe with delayed addition of dopamine, it was clear that neither compound nor their oxygenated products interfered with electron transport via cytochrome b561. These results are consistent with the hypothesis that the physiological activity observed with both PAES and PAESe may be related to their ability to gain entrance to adrenergic neurons and decrease norepinephrine synthesis within neurotransmitter storage vesicles. Topics: Adrenal Medulla; Animals; Ascorbic Acid; Cattle; Chromaffin Granules; Chromaffin System; Dopamine beta-Hydroxylase; Ethylamines; Intracellular Membranes; Norepinephrine; Organoselenium Compounds; Oxides; Phenethylamines | 1989 |