ascorbic-acid has been researched along with phenethylamine* in 2 studies
2 other study(ies) available for ascorbic-acid and phenethylamine
Article | Year |
---|---|
Molecularly imprinted poly[bis(2,2'-bithienyl)methane] film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine.
A piezoelectric microgravimetry (PM) chemosensor, featuring a film of molecularly imprinted polymer (MIP) of poly[bis(2,2'-bithienyl)methane] bearing either a 3,4-dihydroxyphenyl or benzo-18-crown-6 substituent, for selective determination of dopamine was devised and tested. A Pt/quartz resonator and a dopamine-templated MIP film, deposited by electropolymerization onto an underlayer of poly(bithiophene), served as the transducer and recognition element of the chemosensor, respectively. The UV-vis spectroscopic and XPS as well as electrochemical measurements verified completeness of the dopamine template extraction with a strong base solution. The extraction-generated molecular cavities featured recognition sites that served selective dopamine analyte binding. The SECM imaging substantiated the permeability characteristics of the template-free MIP film. The dopamine analyte was determined under FIA conditions with the PM detection. The lower limit of detection was 10nM dopamine at favorable conditions involving the 35 μL/min carrier solution flow rate and the injected sample volume of 1 mL. The sensitivity of the chemosensor increased almost fivefold when the poly(bithiophene) film coated Pt/quartz electrode was used instead of the bare Pt/quartz electrode as the substrate for deposition of the MIP film. The chemosensor successfully discriminated dopamine from structural and functional analogues, such as 2-phenylethylamine, histamine, and ascorbic acid. The optimum mean thickness of the MIP film was ∼220 nm. Topics: Ascorbic Acid; Biosensing Techniques; Crown Ethers; Dopamine; Electrochemistry; Electrodes; Histamine; Methane; Molecular Imprinting; Phenethylamines; Photoelectron Spectroscopy; Platinum; Polymers; Quartz; Spectrophotometry, Ultraviolet; Thiophenes; Transducers | 2010 |
Effect of direct and indirect dopamine agonists on brain extracellular ascorbate levels in the striatum and nucleus accumbens of awake rats.
Systemic administration of direct and indirect dopamine agonists resulted in increased extracellular ascorbic acid levels in the striatum and, to a lesser degree, in the nucleus accumbens as measured by in vivo voltammetry. Intraperitoneal d-amphetamine sulfate (5mg/kg) increased ascorbate concentrations in striatal extracellular fluid. Amphetamine also increased extracellular ascorbate levels in the nucleus accumbens although more gradually and to a lesser extent. Intraperitoneal phenethylamine hydrochloride (20 mg/kg) following pargyline hydrochloride pretreatment (20 mg/kg) increased extracellular ascorbate levels in the striatum significantly above the small increase seen in the nucleus accumbens. The direct acting dopamine agonists Ly-141865 and Ly-163502 when given i.p. at 1 mg/kg, resulted in increased extracellular ascorbate concentrations in both brain areas, again with a significantly greater effect in the striatum. These results indicate that brain extracellular ascorbate levels can be modulated by dopaminergic neuro-transmission and that this modulation is quantitatively different in different dopamine-containing brain structures. Topics: Animals; Ascorbic Acid; Corpus Striatum; Dextroamphetamine; Dopamine Agents; Ergolines; Extracellular Space; Male; Nucleus Accumbens; Phenethylamines; Quinolines; Quinpirole; Rats; Rats, Inbred Strains | 1990 |