ascorbic-acid has been researched along with oxophenylarsine* in 4 studies
4 other study(ies) available for ascorbic-acid and oxophenylarsine
Article | Year |
---|---|
Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate.
Mitochondria are the major source of potentially damaging reactive oxygen species in most cells. Since ascorbic acid, or vitamin C, can protect against cellular oxidant stress, we studied the ability of mitochondria prepared from guinea pig skeletal muscle to recycle the vitamin from its oxidized forms. Although ascorbate concentrations in freshly prepared mitochondria were only about 0.2 mM, when provided with 6 mM succinate and 1 mM dehydroascorbate (the two-electron-oxidized form of the vitamin), mitochondria were able to generate and maintain concentrations as high as 4 mM, while releasing most of the ascorbate into the incubation medium. Mitochondrial reduction of dehydroascorbate was strongly inhibited by 1,3-bis(chloroethyl)-1-nitrosourea and by phenylarsine oxide. Despite existing evidence that mitochondrial ascorbate protects the organelle from oxidant damage, ascorbate failed to preserve mitochondrial alpha-tocopherol during prolonged incubation in oxygenated buffer. Nonetheless, the capacity for mitochondria to recycle ascorbate from its oxidized forms, measured as ascorbate-dependent ferricyanide reduction, was several-fold greater than total steady-state ascorbate concentrations. This, and the finding that more than half of the ascorbate recycled from dehydroascorbate escaped the mitochondrion, suggests that mitochondrial recycling of ascorbate might be an important mechanism for regenerating intracellular ascorbate. Topics: alpha-Tocopherol; Animals; Arsenicals; Ascorbic Acid; Carmustine; Dehydroascorbic Acid; Diamide; Ethylmaleimide; Ferricyanides; Guinea Pigs; In Vitro Techniques; Maleates; Mitochondria, Muscle; Oxidation-Reduction; Sulfhydryl Reagents | 2007 |
Reduction and uptake of methylene blue by human erythrocytes.
A thiazine dye reductase has been described in endothelial cells that reduces methylene blue (MB), allowing its uptake into cells. Because a different mechanism of MB uptake in human erythrocytes has been proposed, we measured MB uptake and reduction in this cell type. Oxidized MB (MB(+)) stimulated reduction of extracellular ferricyanide in a time- and concentration-dependent manner, reflecting extracellular reduction of the dye. Reduced MB was then taken up by the cells and partially oxidized to MB(+). Both forms were retained against a concentration gradient, and their redox cycling induced an oxidant stress in the cells. Whereas concentrations of MB(+) <5 microM selectively oxidized NAD(P)H, higher concentrations also oxidized both glutathione (GSH) and ascorbate, especially in the absence of d-glucose. MB(+)-stimulated ferricyanide reduction was inhibited by thiol reagents with different mechanisms of action. Phenylarsine oxide, which is selective for vicinal dithiols in proteins, inhibited MB(+)-dependent ferricyanide reduction more strongly than it decreased cell GSH and pentose phosphate cycle activity, and it did not affect cellular NADPH. Open erythrocyte ghost membranes facilitated saturable NAD(P)H oxidation by MB(+), which was abolished by pretreating ghosts with low concentrations of trypsin and phenylarsine oxide. These results show that erythrocytes sequentially reduce and take up MB(+), that both reduced and oxidized forms of the dye are concentrated in cells, and that the thiazine dye reductase activity initially responsible for MB(+) reduction may correspond to MB(+)-dependent NAD(P)H reductase activity in erythrocyte ghosts. Topics: Arsenicals; Ascorbic Acid; Cell Membrane; Dose-Response Relationship, Drug; Erythrocytes; Extracellular Fluid; Ferricyanides; Glutathione; Humans; Methylene Blue; NADH, NADPH Oxidoreductases; NADP; Oxidation-Reduction; Oxidative Stress; Subcellular Fractions | 2004 |
GSH is required to recycle ascorbic acid in cultured liver cell lines.
Liver is the site of ascorbic acid synthesis in most mammals. As human liver cannot synthesize ascorbate de novo, it may differ from liver of other species in the capacity or mechanism for ascorbate recycling from its oxidized forms. Therefore, we compared the ability of cultured liver-derived cells from humans (HepG2 cells) and rats (H4IIE cells) to take up and reduce dehydroascorbic acid (DHA) to ascorbate. Neither cell type contained appreciable amounts of ascorbate in culture, but both rapidly took up and reduced DHA to ascorbate. Intracellular ascorbate accumulated to concentrations of 10-20 mM following loading with DHA. The capacity of HepG2 cells to take up and reduce DHA to ascorbate was more than twice that of H4IIE cells. In both cell types, DHA reduction lowered glutathione (GSH) concentrations and was inhibited by prior depletion of GSH with diethyl maleate, buthionine sulfoximine, and phenylarsine oxide. NADPH-dependent DHA reduction due to thioredoxin reductase occurred in overnight-dialyzed extracts of both cell types. These results show that cells derived from rat liver synthesize little ascorbate in culture, that cultured human-derived liver cells have a greater capacity for DHA reduction than do rat-derived liver cells, but that both cell types rely largely on GSH- or NADPH-dependent mechanisms for ascorbate recycling from DHA. Topics: Animals; Arsenicals; Ascorbic Acid; Buthionine Sulfoximine; Cell Line; Cells, Cultured; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glutathione; Humans; Kinetics; Liver; Maleates; NADP; Rats; Thioredoxin-Disulfide Reductase; Time Factors; Water | 2001 |
Enzyme-dependent ascorbate recycling in human erythrocytes: role of thioredoxin reductase.
Human erythrocytes efficiently reduce dehydroascorbic acid (DHA) to ascorbate, which helps to maintain the ascorbate content of blood. Whereas erythrocyte DHA reduction is thought to occur primarily through a direct chemical reaction with GSH, this work addresses the role of enzyme-mediated DHA reduction by these cells. The ability of intact erythrocytes to recycle DHA to ascorbate, estimated as DHA-dependent ferricyanide reduction, was decreased in parallel with GSH depletion by glutathione-S-transferase substrates. In contrast, the sulfhydryl reagent phenylarsine oxide inhibited DHA reduction to a much greater extent than it decreased GSH in intact cells. DHA reduction in excess of that due to a direct chemical reaction with GSH was also observed in freshly prepared hemolysates. Hemolysates likewise showed NADPH-dependent reduction of DHA that appeared due to thioredoxin reductase, because this activity was inhibited 68% by 10 microM aurothioglucose, doubled by 5 microM E. coli thioredoxin, and had an apparent Km for DHA (1.5 mM) similar to that of purified thioredoxin reductase. Additionally, aurothioglucose-sensitive, NADPH-dependent DHA reductase activity was decreased 80% in hemolysates prepared from phenylarsine oxide-treated cells. GSH-dependent DHA reduction in hemolysates was more than 10-fold that of NADPH-dependent reduction. Nonetheless, the ability of phenylarsine oxide to decrease DHA reduction in intact cells with little effect on GSH suggests that enzymes, such as thioredoxin reductase, may contribute more to this activity than previously considered. Topics: Arsenicals; Ascorbic Acid; Aurothioglucose; Cell Membrane; Cell-Free System; Dehydroascorbic Acid; Dinitrochlorobenzene; Dose-Response Relationship, Drug; Enzymes; Erythrocytes; Ferricyanides; Glutathione; Glutathione Transferase; Hemolysis; Humans; Ketones; NADP; Thioredoxin-Disulfide Reductase; Vitamin E | 1998 |