ascorbic-acid and oleuropein

ascorbic-acid has been researched along with oleuropein* in 2 studies

Reviews

1 review(s) available for ascorbic-acid and oleuropein

ArticleYear
Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review.
    International journal of molecular sciences, 2021, Mar-24, Volume: 22, Issue:7

    Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.

    Topics: Antioxidants; Ascorbic Acid; Biosensing Techniques; Curcumin; Electric Conductivity; Electrodes; Free Radicals; Gallic Acid; Graphite; Humans; Iridoid Glucosides; Melatonin; Metals; Nanocomposites; Nanostructures; Oxides; Phenylethyl Alcohol; Quantum Dots; Resveratrol; Tannins; Tocopherols

2021

Other Studies

1 other study(ies) available for ascorbic-acid and oleuropein

ArticleYear
Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits.
    Lipids, 2000, Volume: 35, Issue:1

    On the basis of the results obtained with pilot studies conducted in vitro on human low density lipoprotein (LDL) and on cell cultures (Caco-2), which had indicated the ability of certain molecules present in olive oil to inhibit prooxidative processes, an in vivo study was made of laboratory rabbits fed special diets. Three different diets were prepared: a standard diet for rabbits (diet A), a standard diet for rabbits modified by the addition of 10% (w/w) extra virgin olive oil (diet B), a modified standard diet for rabbits (diet C) differing from diet B only in the addition of 7 mg kg(-1) of oleuropein. A series of biochemical parameters was therefore identified, both in the rabbit plasma and the related isolated LDL, before and after Cu-induced oxidation. The following, in particular, were selected: (i) biophenols, vitamins E and C, uric acid, and total, free, and ester cholesterol in the plasma; (ii) proteins, triglycerides, phospholipids, and total, free, and ester cholesterol in the native LDL (for the latter, the dimensions were also measured); (iii) lipid hydroperoxides, aldehydes, conjugated dienes, and relative electrophoretic mobility (REM) in the oxidized LDL (ox-LDL). In an attempt to summarize the results obtained, it can be said that this investigation has not only verified the antioxidant efficacy of extra virgin olive oil biophenols and, in particular, of oleuropein, but has also revealed a series of thus far unknown effects of the latter on the plasmatic lipid situation. In fact, the addition of oleuropein in diet C increased the ability of LDL to resist oxidation (less conjugated diene formation) and, at the same time, reduced the plasmatic levels of total, free, and ester cholesterol (-15, -12, and -17%, respectively), giving rise to a redistribution of the lipidic components of LDL (greater phospholipid and cholesterol amounts) with an indirect effect on their dimensions (bigger by about 12%).

    Topics: Animals; Ascorbic Acid; Cholesterol; Chromatography, High Pressure Liquid; Copper; Dietary Fats; Female; Iridoid Glucosides; Iridoids; Lipid Peroxidation; Lipoproteins, LDL; Olive Oil; Plant Oils; Pyrans; Rabbits; Triglycerides; Uric Acid; Vitamin E

2000