ascorbic-acid has been researched along with neoxanthin* in 2 studies
2 other study(ies) available for ascorbic-acid and neoxanthin
Article | Year |
---|---|
Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple.
The sun-exposed peel of 'Gala' apple with or without sunburn was compared in terms of photooxidation and photoprotection, and a controlled experiment was conducted to probe the initial responses of PSII to high light and high temperature. The content of carotenoids, lutein and xanthophylls on a chlorophyll basis was higher in the sunburned peel although they were lower expressed on a peel area basis. Significant loss of beta-carotene and neoxanthin was observed relative to chlorophylls in the sunburned peel. O(2) evolution rates and the activity of key enzymes in the Calvin cycle were lower in the sunburned peel, but the activity of these enzymes decreased to a lesser extent than the O(2) evolution rates. The activity of antioxidant enzymes in the ascorbate-glutathione cycle and the level of total ascorbate, total glutathione, and reduced glutathione were higher in the sunburned peel. However, the sunburned peel had higher H(2)O(2) and malondialdehyde contents. Fruit peels treated with high temperature (45 degrees C) alone showed a clear "K" step in their chlorophyll fluorescence transients whereas high temperature coupled with high light (1,600 micromol m(-2) s(-1)) led to the disappearance of the "K" step and a further decrease in F (V)/F (M) (similar to what was observed in the sunburned peel). We conclude that high temperature coupled with high light damages the PSII complexes at both the donor and acceptor sides. Although both the xanthophyll cycle and the antioxidant system are up-regulated in response to the photooxidative stress, this up-regulation does not provide enough protection against the photooxidation. Topics: Ascorbic Acid; Carotenoids; Chlorophyll; Fruit; Glutathione; Hot Temperature; Light; Lutein; Malondialdehyde; Malus; Oxidation-Reduction; Xanthophylls | 2008 |
Tree- and needle-age-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline.
To cope with environmental stress, plants are equipped with antioxidative (e.g., ascorbate, glutathione and alpha-tocopherol) and photoprotective (e.g., xanthophyll cycle pigments) defense systems. We investigated the defense capacities of three tree age classes (mature, sapling and seedling) of Norway spruce (Picea abies (L.) Karst.) at a field site near the timberline. Biochemical data were expressed on both a needle dry mass and a surface area basis. Compared with current-year needles, previous-year needles contained higher mass- and area-based concentrations of chlorophylls and alpha-tocopherol, and a larger xanthophyll cycle pool that was in a more epoxidized state. Total glutathione concentration was lower, the glutathione pool was more reduced and the ascorbate pool was more oxidized in previous-year needles than in current-year needles. Needle concentrations of glutathione and alpha-tocopherol increased and chlorophyll concentration decreased with increasing tree age when expressed on a surface area basis. On a dry mass basis, these trends were reversed or nonexistent. The ascorbate pool was more reduced and the glutathione pool was more oxidized in needles of mature trees than in needles of saplings and seedlings. The proportion of protective xanthophyll cycle pigments decreased and the de-epoxidation state increased with increasing tree age. We conclude that tree age and the basis of expression of antioxidant concentration--surface area or dry mass--are important in scaling from seedlings to large trees. Topics: alpha-Tocopherol; Antioxidants; Ascorbic Acid; beta Carotene; Carotenoids; Chlorophyll; Glutathione; Picea; Pigments, Biological; Plant Leaves; Trees; Xanthophylls | 2002 |