ascorbic-acid and metaperiodate

ascorbic-acid has been researched along with metaperiodate* in 3 studies

Other Studies

3 other study(ies) available for ascorbic-acid and metaperiodate

ArticleYear
Batch and hydrodynamic monitoring of vitamin C using novel periodate selective sensors based on a newly synthesized Ni(II)-Schiff bases complexes as a neutral receptors.
    Talanta, 2010, Jan-15, Volume: 80, Issue:3

    A highly selective membrane electrodes based on a two newly synthesized nickel (II) Schiff bases, [NiL(1)] and [NiL(2)] where L(1) and L(2) are N,N/bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H(2)L(1)) and N,N/bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H(2)L(2)) were used as a neutral carrier ionophores for static and hydrodynamic potentiometric mode of operations for the determination of periodate. Under static mode of operation, the sensors displayed a near-Nernstian slope of -66.1+/-0.8 and -59.9+/-1.1mV decade(-1) of activity and detection limits to 5.2x10(-6) and 7.3x10(-6)molL(-1) for the sensors based on [NiL(1)] and [NiL(2)], respectively. Under hydrodynamic mode of operation (FIA), the slope of the calibration plot, limit of detection, and working linear range were -71.1mV decade(-1) of activity, 7.3x10(-6) and 1.0x10(-5) to 1.0x10(-3)molL(-1), respectively. The response time of the sensors in whole concentration ranges was very short (<10s). The response of the sensors was independent on the pH range of 3-8. A tubular version was further developed and coupled to a flow injection system for ascorbic acid (AA) determination in beverages and pharmaceutical preparations. This approach was achieved by selecting a 50-cm reactor and an overall flow of 3mLmin(-1), and injecting volume 100microL of AA standards in a 1.0x10(-4)molL(-1) IO(4)(-) solution. Under these conditions, a linearity range of 2-13microgmL(-1), with a slope of 4.97mV (mg/L)(-1) (r(2)=0.9995), detection limit 0.9mgL(-1) and a reproducibility of +/-1.1mV (n=5) was recorded. This simple and inexpensive flow injection analysis manifold, with a good potentiometric detector, enabled the analysis of approximately 50 samples h(-1) without requiring pretreatment procedures. An average recovery of 98.8% and a mean standard deviation of 1.3% were obtained.

    Topics: Ascorbic Acid; Beverages; Electrodes; Membranes, Artificial; Nickel; Organometallic Compounds; Periodic Acid; Pharmaceutical Preparations

2010
Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate.
    Nature, 2005, Jan-06, Volume: 433, Issue:7021

    Increasing the L-ascorbate (vitamin C) content of crops could in principle involve promoting its biosynthesis or inhibiting its degradation. Recent progress has revealed biosynthetic pathways for ascorbate, but the degradative pathways remain unclear. The elucidation of such pathways could promote an understanding of the roles of ascorbate in plants, and especially of the intriguing positive correlation between growth rate and ascorbate oxidase (or its products). In some plants (Vitaceae), ascorbate is degraded via L-idonate to L-threarate (L-tartrate), with the latter arising from carbons 1-4 of ascorbate. In most plants, however (including Vitaceae), ascorbate degradation can occur via dehydroascorbate, yielding oxalate plus L-threonate, with the latter from carbons 3-6 of ascorbate. The metabolic steps between ascorbate and oxalate/L-threonate, and their subcellular location, were unknown. Here we show that this pathway operates extracellularly in cultured Rosa cells, proceeds via several novel intermediates including 4-O-oxalyl-L-threonate, and involves at least one new enzyme activity. The pathway can also operate non-enzymatically, potentially accounting for vitamin losses during cooking. Several steps in the pathway may generate peroxide; this may contribute to the role of ascorbate as a pro-oxidant that is potentially capable of loosening the plant cell wall and/or triggering an oxidative burst.

    Topics: Ascorbic Acid; Biodegradation, Environmental; Buffers; Butyrates; Cells, Cultured; Enzymes; Hydrolysis; Oxidation-Reduction; Periodic Acid; Plant Proteins; Rosa

2005
alpha,beta-Dehydro-3,4-dihydroxyphenylalanine derivatives: potential schlerotization intermediates in natural composite materials.
    Archives of biochemistry and biophysics, 1991, Feb-15, Volume: 285, Issue:1

    Proteins containing the post-translationally modified amino acid L-3,4-dihydroxyphenylalanine (DOPA) undergo autosclerotization as a means of assuring cohesive resilience in many structural matrices found in nature. To explore the chemical mechanism of sclerotization, we examined the oxidation products of relatively simple analogs of a peptidyl DOPA residue, such as N-acetylDOPA ethyl ester and N-acetyldopamide, together with those of several oligopeptides. Oxidation, induced by either of two catecholoxidases or by sodium periodate, resulted in the Lewis base catalyzed formation of derivatives of the unusual amino acid 3,4-dihydroxy-alpha,beta-dehydroDOPA (delta DOPA). The N-acetyl delta DOPA ethyl ester representative of this group of derivatives was characterized by NMR and uv spectroscopy. A variety of peptides developed analogous uv spectra upon oxidation. A similar reaction was observed upon oxidation of 3,4-dihydroxyphenylpropanoic (dihydrocaffeic) acid, but not after oxidation of N-acetyldopamine. Evidence is presented that this conversion is the result of a rearrangement of the DOPA quinone moiety to its delta DOPA tautomer, and that this tautomerization can be a dominant fate for peptidyl DOPA quinone, provided a Lewis base catalyst is available and competing reactions are minimized. Formation of delta DOPA in natural or synthetic polymers would increase the variety of crosslinks available to sclerotizing matrices. delta DOPA has been found in naturally occurring oligopeptides isolated by other workers from several marine species.

    Topics: Amino Acid Sequence; Ascorbic Acid; Caffeic Acids; Catechol Oxidase; Consensus Sequence; Dihydroxyphenylalanine; Hydroxylation; Isomerism; Magnetic Resonance Spectroscopy; Molecular Sequence Data; Periodic Acid; Spectrophotometry, Ultraviolet

1991