ascorbic-acid has been researched along with lead-chromate* in 5 studies
5 other study(ies) available for ascorbic-acid and lead-chromate
Article | Year |
---|---|
Lead ions do not cause human lung cells to escape chromate-induced cytotoxicity.
Hexavalent chromium (Cr (VI)) compounds are established human lung carcinogens. Solubility plays a key role in Cr (VI) carcinogenicity, with the most potent carcinogens being water-insoluble or 'particulate'. Lead chromate is used as the prototypical particulate Cr (VI) compound since it is the most insoluble of these compounds. Previous work in our laboratory showed that lead chromate particles dissolve outside cells to produce chromium (Cr) and lead (Pb) ions and that the Cr ions were genotoxic. Pb has been hypothesized to play an epigenetic role in the carcinogenic activity of lead chromate, perhaps by allowing Cr-damaged cells to survive, however, this possibility has not been investigated. Accordingly, we determined the functional role of Pb and Cr ions in lead chromate-induced clonogenic survival. We found that vitamin C co-treatment eliminated Cr ion uptake, had only a slight effect on Pb ion levels, and eliminated lead chromate cytotoxicity. These data indicate that Cr ions caused the cytotoxicity. We found that lead chromate and soluble Cr (VI) induced similar amounts of cytotoxicity indicating that Pb does not play an epigenetic role and cause Cr-damaged cells to survive. Topics: Ascorbic Acid; Carcinogens, Environmental; Cations; Cell Count; Cell Line; Cell Survival; Chromates; Chromium; Humans; Lead; Lung; Microscopy, Electron; Solubility | 2005 |
Lead chromate-induced chromosome damage requires extracellular dissolution to liberate chromium ions but does not require particle internalization or intracellular dissolution.
Hexavalent chromium [Cr(VI)] is a well-established human lung carcinogen. Water solubility has proven to be a key factor in the carcinogenicity of Cr(VI), with the water insoluble or "particulate" compounds the more potent carcinogens. Pathology studies indicate that chromates target cells at bronchial bifurcation sites in human lungs. However, it is uncertain what roles particle internalization and dissolution play in the genotoxicity of these compounds to human lung cells. We investigated these mechanisms in a human lung cell line after exposure to particulate lead chromate. We found that lead chromate was clastogenic in a concentration-dependent manner with 0.1, 0.5, and 1 microg/cm(2), while 5 and 10 microg/cm(2) caused complete cell cycle arrest. We also found concentration-dependent increases in intracellular and extracellular chromium ion levels. We investigated particle internalization by using transmission electron microscopy and found an apparent relative increase with concentration but no apparent particle internalization at the lowest concentration (0.1 microg/cm(2)) even after 24 h. Furthermore, we found no lysosomal association with the vacuoles containing particles, further suggesting that intracellular dissolution did not occur. Cotreating the cells with lead chromate and vitamin C eliminated both the uptake of ionic chromium and the clastogenic activity of lead chromate but had no effect on particle internalization. These data indicate that in human bronchial cells lead chromate clastogenesis is mediated by the extracellular dissolution of the particles and not their internalization. These findings have important implications for our understanding of the physicochemical mechanism of particulate chromates as they contradict previous indirect data from human bronchial epithelial cells, which suggest that particles dissolve inside those cells. Thus, these new data suggest that there may be different mechanisms of genotoxicity for epithelial cells and fibroblasts exposed to chromate particles. Topics: Ascorbic Acid; Cell Cycle; Cell Line; Chromates; Chromium; Chromosome Aberrations; Dose-Response Relationship, Drug; Epithelial Cells; Fibroblasts; Humans; Intracellular Fluid; Lead; Lung; Lysosomes; Microscopy, Electron; Mutagens; Particle Size | 2004 |
Induction of apoptotic cell death by particulate lead chromate: differential effects of vitamins C and E on genotoxicity and survival.
Certain hexavalent chromium compounds are documented human carcinogens. Exposure of cells to particulate forms of chromium results in cell-enhanced dissolution of particles in the extracellular microenvironment and chronic production of chromium oxyanions, which are taken up by the cell through an anion transport system and are genotoxic and clastogenic. It was previously shown that apoptosis is the mode of cell death of nearly all of the Chinese hamster ovary cells (CHO-AA8 cell line), which die after high-dose, short-term treatments with soluble sodium chromate. In this report the mode of cell killing by particulate lead chromate and of low-dose continuous treaments of soluble sodium chromate designed to mimic conditions of ionic chromate uptake after lead chromate exposure was examined. CHO-AA8 cells were treated for 24 hr with doses of sodium chromate or lead chromate which cause a 50% decrease in survival in colony-forming effeciency assays. Longer treatments (up to 72 hr) at the same doses did not decrease survival further than the 24-hr exposure. Morphological changes indicative of apoptosis, as well as internucleosomal DNA fragmentation, were detectable by 24 hr after treatment with lead chromate or soluble sodium chromate. All of the cells killed by treatments with lead chromate particles underwent apoptosis as the mode of cell death and this was accurately modeled in cell culture by continuous treatments with low-dose soluble sodium chromate. Exposure of cells to hexavalent chromium compounds causes a spectrum of DNA damage which can be selectively altered by pretreatment of cells with antioxidant vitamins prior to chromium exposure. Here we show that ascorbate and alpha-tocopherol markedly inhibited the chromosomal aberrations induced by both particulate and soluble chromate compounds, even though chromium adduct levels were not decreased by either vitamin pretreatment. Cell survival assays showed that ascorbate, but not alpha-tocopherol, protected cells from apoptosis induced by sodium chromate. The results differentiate chromium-induced apoptosis from both chromosomal damage and adduct levels and suggest that other lesions sensitive to ascorbate but not tocopherol are the proximal inducing signal for chromium-induced apoptosis. Topics: Animals; Apoptosis; Ascorbic Acid; Cell Survival; CHO Cells; Chromates; Coloring Agents; Cricetinae; DNA Adducts; DNA Damage; DNA Fragmentation; Lead; Microscopy, Electron; Microscopy, Fluorescence; Particle Size; Vitamin E | 1997 |
Inhibition of lead chromate clastogenesis by ascorbate: relationship to particle dissolution and uptake.
Chromium metal salts are considered to be human carcinogens, especially the salts of low solubility. Lead chromate, a highly insoluble chromium metal salt, has been shown to be tumorigenic, genotoxic and clastogenic. In this study, the roles of particle-cell contact, particle dissolution and particle uptake in the clastogenic activity of lead chromate were investigated. Using Pb51CrO4 it was found that lead chromate particles (1.2 microns mean diameter, -28 mV surface charge) were slightly soluble in water; solubility increased 2-fold when particles were incubated in culture medium, but was not increased further by the addition of serum. The extracellular concentration of chromium increased 7-fold when lead chromate was incubated in the presence of Chinese hamster ovary (CHO) cells compared with culture medium alone. The intracellular concentration of ionic chromium increased in a dose-dependent manner following exposure of CHO cells to clastogenic doses of lead chromate reaching estimated levels as high as 1.2 mM per cell. Treatment of cells with lead chromate particles in the presence of a nontoxic dose of vitamin C blocked uptake of ionic chromium and eliminated the clastogenic activity of the particles. Transmission electron microscopy showed that lead chromate particles were internalized by CHO cells in phagocytic vacuoles in as little as 1 h; internalization was unaffected by co-treatment with vitamin C. It was demonstrated that particle-cell contact was required for lead chromate-induced clastogenesis. These data show that although phagocytic particle uptake occurs, particle-cell contact and extracellular dissolution are responsible for the clastogenic activity of lead chromate. These data also demonstrate that the genotoxicity of particulate hexavalent chromates can be blocked by vitamin C. Topics: Animals; Antimutagenic Agents; Ascorbic Acid; CHO Cells; Chromates; Chromium; Cricetinae; DNA Damage; Lead; Mutagenesis; Particle Size; Solubility | 1993 |
The visualization of vertebrate capillary beds by intravascular precipitation of lead chromate.
Topics: Adrenal Glands; Animals; Ascorbic Acid; Capillaries; Chromates; Lead; Vertebrates | 1948 |