ascorbic-acid has been researched along with juglone* in 9 studies
9 other study(ies) available for ascorbic-acid and juglone
Article | Year |
---|---|
Vitamin C protects early mouse embryos against juglone toxicity.
Juglone, a naphthoquinone isolated from many species of the Juglandaceae (walnut) family, has been used in traditional Chinese medicine for centuries for its various pharmacological effects. Our previous research found its toxic effects on oocytes maturation. But we still know a little about its toxic effects on embryo development. Here, we used mouse embryo as a model to explore the effects of juglone on early mammalian embryo development. Exposure to juglone significantly decreased the development rate in early mouse embryos in vitro. Moreover, juglone exposure led to developmental arrest by disturbing mitochondrial function, producing abnormal epigenetic modifications, inducing high levels of oxidative stress and DNA damage, and increasing the rate of embryonic cell apoptosis. However, vitamin C (VC) ameliorated the toxic effects of juglone to a certain extent. Overall, juglone has a toxic effect on early embryo development through the generation of ROS and apoptosis. But VC was able to protect against these juglone-induced defects. These results not only give a new perspective on juglone's pharmacological effects on early mammalian embryo development, but also provide ideas for the better application of this agent in traditional Chinese medicine. Topics: Animals; Apoptosis; Ascorbic Acid; DNA Damage; Embryo, Mammalian; Embryonic Development; Female; Male; Mice, Inbred ICR; Naphthoquinones; Protective Agents; Reactive Oxygen Species; Vitamins | 2020 |
Vitamin C protects against defects induced by juglone during porcine oocyte maturation.
Juglone, a naphthoquinone isolated from many species of the Juglandaceae family, has been used in traditional Chinese medicine for centuries because of its antiviral, antibacterial, and antitumor activities. However, the toxicity of juglone has also been demonstrated. Here, we used porcine oocytes as a model to explore the effects of juglone on oocyte maturation and studied the impact of vitamin C (VC) administration on juglone exposure-induced meiosis defects. Exposure to juglone significantly restricted cumulus cell expansion and decreased the first polar body extrusion. In addition, juglone exposure disturbed spindle organization, actin assembly, and the distribution of mitochondria during oocyte meiosis, while the acetylation level of α-tubulin was also reduced. These defects were all ameliorated by VC administration. Our findings indicate that juglone exposure induced meiotic failure in porcine oocytes, while VC protected against these defects during porcine oocyte maturation by ameliorating the organization of the cytoskeleton and mitochondrial distribution. Topics: Acetylation; Animals; Ascorbic Acid; Cumulus Cells; Cytoskeleton; Female; In Vitro Oocyte Maturation Techniques; Meiosis; Mitochondria; Naphthoquinones; Oocytes; Polar Bodies; Swine; Tubulin | 2019 |
Juglone-ascorbic acid synergy inhibits metastasis and induces apoptotic cell death in poorly differentiated thyroid carcinoma by perturbing SOD and catalase activities.
Anaplastic thyroid carcinoma (ATC) requires more innovative approaches as the current regimes for therapy are inadequate, also most anticancer drugs cause general suppression of physiological functions. However, therapy with limited nontarget tissue damage is desirable. In the present study, we show prooxidant ability of ascorbic acid, which enhances cytotoxicity induced by juglone. We decipher that juglone-ascorbate combination induces reactive oxygen species-mediated apoptosis leading to cell death in ARO cell line originated from ATC. This combination also affects enzyme activity of catalase, glutathione reductase, and superoxide dismutase destabilizing redox balance in cell and thereby making juglone effective at a lower dose. We also show that juglone-ascorbate combination suppresses cell migration, invasion, and expression of tumor-promoting, and angiogenic genes in ARO cell line, thereby disrupting epithelial-mesenchymal transition ability of the cells. Overall, we show that ascorbic acid increases cytotoxic potency of juglone through redox cycling when used in synergy. Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Ascorbic Acid; Cell Line, Tumor; Cell Movement; Drug Resistance, Neoplasm; Drug Synergism; Gene Expression Regulation, Neoplastic; Glutathione; Humans; Inhibitory Concentration 50; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Proteins; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxidoreductases; RNA Interference; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms | 2018 |
Augmentation of oxidative stress-induced apoptosis in MCF7 cells by ascorbate-tamoxifen and/or ascorbate-juglone treatments.
Since reactive oxygen species (ROS) play diverse roles in cancer, modulating the redox status of cancerous cells seems to be a promising therapeutic approach. Oxidant-targeted therapy appears logical for intervention with the acquired adaptive response to oxidative stress in cancer. In this study, we investigated the cytotoxic effects of juglone (J) and tamoxifen (T) and also the combination of each with ascorbate (A): tamoxifen/ascorbate (TA) and/or juglone/ascorbate (JA) on MCF7 cancerous cells. The results revealed that the growth inhibitory effects of juglone and tamoxifen were each associated with enhanced levels of ROS production and lipid peroxidation. These effects were markedly intensified in tamoxifen/ascorbate and juglone/ascorbate co-treatments. On the other hand, the intracellular anti-oxidant components such as reduced glutathione (GSH), catalase, superoxide dismutase (SOD), and glutathione peroxidase significantly declined in cells subjected to combination treatments compared to that in cells exposed solely to tamoxifen, juglone, and the untreated control cells. In addition, ascorbate association induced more apoptotic and necrotic or necrotic-like cell death than cells treated with each drug alone. These results were further confirmed by comparing the Bax/Bcl2 ratio in combination-treated cells. Additionally, ascorbate was able to potentiate the cytotoxic effects of combination therapy via activation of ROS-responsive factors including Foxo family members. Topics: Antioxidants; Apoptosis; Ascorbic Acid; Catalase; Cell Proliferation; Glutathione; Glutathione Peroxidase; Humans; Hydrogen Peroxide; Lipid Peroxidation; MCF-7 Cells; Naphthoquinones; Oxidative Stress; Reactive Oxygen Species; Superoxide Dismutase; Tamoxifen | 2016 |
In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate.
The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with (14)C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. Topics: Aminophenols; Animals; Antineoplastic Combined Chemotherapy Protocols; Ascorbic Acid; Carcinoma, Ehrlich Tumor; Disease Progression; Male; Mice; Mice, Inbred BALB C; Naphthoquinones | 2016 |
DNA damage and inhibition of akt pathway in mcf-7 cells and ehrlich tumor in mice treated with 1,4-naphthoquinones in combination with ascorbate.
The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, γH2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells. Topics: Animals; Antineoplastic Agents; Ascorbic Acid; Carcinoma, Ehrlich Tumor; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Damage; Histones; Humans; Male; MCF-7 Cells; Mice; Mice, Inbred BALB C; Naphthoquinones; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species | 2015 |
Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells.
The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC(50) value for juglone at 24 h decreased from 28.5 μM to 6.3 μM in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress in juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 μM), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate. Topics: Antineoplastic Agents; Ascorbic Acid; Cell Line, Tumor; Cell Movement; Cell Proliferation; Humans; Naphthoquinones; Oxidation-Reduction; Oxidative Stress; Urinary Bladder | 2012 |
Simultaneous detection of pro- and antioxidative effects in the variants of the deoxyribose degradation assay.
Interest in the redox properties of natural products has led to the development of various assays for the detection of antioxidant activities and ROS-scavenging properties. Here, additional modifications of the 2-deoxy-d-ribose degradation assay are introduced that specifically allow the determination of interactions of the test compound with the autoxidation of ascorbic acid and the autoxidation of the test compound itself. To illustrate this, juglone and quercetin were used as examples. The modified assay systems provide insights into their specific antioxidative and pro-oxidative properties. In additional, an extensive characterization of the redox properties of their complex with iron is possible, if iron ions are added in the free form or complexed with EDTA. The juglone-iron complex proved to be pro-oxidative in a wider range of milieus than the quercetin-iron complex. Topics: Antioxidants; Ascorbic Acid; Deoxyribose; Free Radical Scavengers; Hydrogen Peroxide; Iron; Kinetics; Metals; Naphthoquinones; Oxidation-Reduction; Quercetin; Reactive Oxygen Species | 2010 |
Defective responses to oxidative stress in protein l-isoaspartyl repair-deficient Caenorhabditis elegans.
We have shown that Caenorhabditis elegans lacking the PCM-1 protein repair l-isoaspartyl methyltransferase are more sensitive to oxidative stress than wild-type nematodes. Exposure to the redox-cycling quinone juglone upon exit from dauer diapause results in defective egg-laying (Egl phenotype) in the pcm-1 mutants only. Treatment with paraquat, a redox-cycling dipyridyl, causes a more severe developmental delay at the second larval stage in pcm-1 mutants than in wild-type nematodes. Finally, exposure to homocysteine and homocysteine thiolactone, molecules that can induce oxidative stress via distinct mechanisms, results in a more pronounced delay in development at the first larval stage in pcm-1 mutants than in wild-type animals. Homocysteine treatment also induced the Egl phenotype in mutant but not wild-type nematodes. All of the effects of these agents were reversed upon addition of vitamin C, indicating that the developmental delay and egg-laying defects result from oxidative stress. Furthermore, we have demonstrated that a mutation in the gene encoding the insulin-like receptor DAF-2 suppresses the Egl phenotype in pcm-1 mutants treated with juglone. Our results support a role of PCM-1 in the cellular responses mediated by the DAF-2 insulin-like signaling pathway in C. elegans for optimal protection against oxidative stress. Topics: Animals; Antioxidants; Ascorbic Acid; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Cell Cycle Proteins; Genotype; Homocysteine; Larva; Metamorphosis, Biological; Methyltransferases; Mutation; Naphthoquinones; Oxidants; Oxidative Stress; Paraquat; Phenotype; Receptor, Insulin | 2009 |