ascorbic-acid has been researched along with goethite* in 4 studies
4 other study(ies) available for ascorbic-acid and goethite
Article | Year |
---|---|
Synergistic effect of reductive and ligand-promoted dissolution of goethite.
Ligand-promoted dissolution and reductive dissolution of iron (hydr)oxide minerals control the bioavailability of iron in many environmental systems and have been recognized as biological iron acquisition strategies. This study investigated the potential synergism between ligands (desferrioxamine B (DFOB) or N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED)) and a reductant (ascorbate) in goethite dissolution. Batch experiments were performed at pH 6 with ligand or reductant alone and in combination, and under both oxic and anoxic conditions. Goethite dissolution in the presence of reductant or ligand alone followed classic surface-controlled dissolution kinetics. Ascorbate alone does not promote goethite dissolution under oxic conditions due to rapid reoxidation of Fe(II). The rate coefficients for goethite dissolution by ligands are closely correlated with the stability constants of the aqueous Fe(III)-ligand complexes. A synergistic effect of DFOB and ascorbate on the rate of goethite dissolution was observed (total rates greater than the sum of the individual rates), and this effect was most pronounced under oxic conditions. For HBED, macroscopically the synergistic effect was hidden due to the inhibitory effect of ascorbate on HBED adsorption. After accounting for the concentrations of adsorbed ascorbate and HBED, a synergistic effect could still be identified. The potential synergism between ligand and reductant for iron (hydr)oxide dissolution may have important implications for iron bioavailability in soil environments. Topics: Acetates; Adsorption; Ascorbic Acid; Deferoxamine; Ethylenediamines; Hydrogen-Ion Concentration; Iron; Iron Compounds; Kinetics; Ligands; Linear Models; Minerals; Oxidation-Reduction; Reducing Agents; Solubility; Temperature | 2015 |
Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template.
Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), xi-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH(2)OH.HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H(2)PtCl(6) to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities. Topics: Ascorbic Acid; Gold; Iron Compounds; Microscopy, Electron, Transmission; Minerals; Models, Biological; Nanostructures; Paramecium; Photoelectron Spectroscopy; Platinum; Spectrometry, X-Ray Emission; Spectrophotometry, Ultraviolet; X-Ray Diffraction | 2010 |
Enhanced recovery of arsenite sorbed onto synthetic oxides by L-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples.
Stripping voltammetry capable of detecting 0.3microg/L arsenate and arsenite was applied for speciation analysis of arsenic sorbed onto synthetic ferrihydrite, goethite at As/Fe ratio of approximately 1.5mg/g with or without birnessite after sequential extraction using 1M phosphate (24 and 16 h) and 1.2M HCl (1h). Precautions to avoid oxygen were undertaken by extracting under anaerobic conditions and by adding 0.1M l-ascorbic acid to 1M NaH(2)PO(4) (pH 5). Addition of l-ascorbic acid did not reduce As(V) to As(III). The recovery rate for As(III) using l-ascorbic acid for extraction (pH 5) but not for adsorption was 81% and 74% of total sorbed As, and was 99% and 97% of extracted As for ferrihydrite and goethite, respectively. Birnessite oxidized most As(III) during the adsorption procedure. l-ascorbic acid used both in adsorption and extraction procedures improved the recovery of As(III) to 79-94% for ferrihydrite-birnessite and 57-94% for goethite-birnessite systems with Fe/Mn ratios of 7, 70, 140 and 280g/g. Topics: Adsorption; Anaerobiosis; Arsenic; Ascorbic Acid; Calibration; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Manganese Compounds; Minerals; Phosphates; Water Pollutants, Chemical; Water Purification | 2006 |
Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide.
It is well known that the dissolution of goethite plays an important role in catalyzing the oxidation of organic chemicals. Therefore, this study investigates how surface dissolution of goethite affects 2-chlorophenol oxidation in the goethite/H2O2 process. Experimental results indicate that ligand and reductant can enhance the dissolution rate of goethite, which is surface-controlled. Our results further indicate 2-chlorophenol degradation depends on goethite concentration. In addition, the oxidation rate of 2-CP is correlated with reductive dissolution rate at various dosages of goethite. Moreover, the oxidation mechanism of 2-CP is also a surface-controlled reaction. A mechanism proposed herein indicates that, in addition to the contaminant, its intermediate species affect the oxidation rate as well. Topics: Ascorbic Acid; Chlorophenols; Dose-Response Relationship, Drug; Ferric Compounds; Hydrogen Peroxide; Industrial Waste; Iron; Iron Compounds; Ligands; Minerals; Models, Chemical; Oxalates; Oxidation-Reduction; Solubility; Surface Properties; Water | 2002 |