ascorbic-acid has been researched along with glucotropeolin* in 2 studies
2 other study(ies) available for ascorbic-acid and glucotropeolin
Article | Year |
---|---|
The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization.
Leaves of Tropaeolum majus L. contain high amounts of the glucosinolate glucotropaeolin. They are used in traditional medicine to treat infections of the urinary tract. When Tropaeolum leaves are consumed, glucotropaeolin is hydrolyzed to yield mustard oils, which are absorbed in the intestine and excreted in the urine, exhibiting their antimicrobial activity. For a corresponding phytopharmacon, a sufficiently high glucotropaeolin concentration is required and any degradation of glucosinolates while drying must be minimized, i.e. the post mortal cleavage by myrosinases, which are activated by ascorbic acid. In extensive screenings, the dominant parameters determining the glucotropaeolin content in the dried leaves were quantified. It turned out that the glucotropaeolin concentration in the dried leaves represented the most suitable screening parameter. The screening of several hundred Tropaeolum plants resulted in the selection of eight high-yield varieties, from which in vitro plants had been generated and propagated as a source for large field trials. Topics: Ascorbic Acid; Drug Industry; Glucosinolates; Glycoside Hydrolases; Isothiocyanates; Plant Leaves; Plant Proteins; Tropaeolum | 2008 |
In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products.
Three strains of Bifidobacterium sp., B. pseudocatenulatum, B. adolescentis, and B. longum were studied for their ability to digest glucosinolates, sinigrin (SNG) and glucotropaeolin (GTL), in vitro. All strains digested both glucosinolates during 24-48 h cultivation, accompanied by a decline in the medium pH from 7.1 to 5.2. The digestion of glucosinolates by a cell-free extract prepared from sonicated cells of B. adolescentis, but not cultivated broth, increased in the presence of 0.5 mM l-ascorbic acid. Also, a time-dependent formation of allyl isothiocyanate (AITC) was observed when the cell-free extract was incubated with 0.25 mM SNG for 120 min at pH 7.0. These reaction features suggest that the digestive activity may have been due to an enzyme similar to myrosinase, an enzyme of plant origin. GC-MS analysis of the Bifidobacterial cultured broth showed that the major products were 3-butenenitrile (BCN) and phenylacetonitrile (PhACN), from SNG and GTL, respectively and nitriles, probably due to a decrease in the pH of the media. AITC and benzyl isothiocyanate (BzITC) were barely detectable in the broth. It was concluded that the three species of Bifidobacteria could be involved in digestive degradation of glucosinolates in the human intestinal tract. Topics: Acetonitriles; Ascorbic Acid; Bifidobacterium; Biotransformation; Culture Media, Conditioned; Digestive System; Gas Chromatography-Mass Spectrometry; Glucosinolates; Hydroxamic Acids; Isothiocyanates; Nitriles; Thioglucosides | 2004 |