ascorbic-acid and glucobrassicin

ascorbic-acid has been researched along with glucobrassicin* in 8 studies

Reviews

2 review(s) available for ascorbic-acid and glucobrassicin

ArticleYear
Health benefits and possible risks of broccoli - an overview.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2011, Volume: 49, Issue:12

    Chemopreventive effects of broccoli, a highly valued vegetable, have been known for a long time. Several studies have demonstrated that broccoli might be beneficial by reducing the risk for the development of certain forms of cancer. These effects are generally attributed to glucosinolate-derived degradation products like isothiocyanates and indoles which are formed by the hydrolytic action of plant myrosinase and/or glucosidases deriving from the human microbial flora. However, recent in vitro and experimental animal studies indicate that broccoli, its extracts and the glucosinolate-derived degradation products might also have undesirable effects, especially genotoxic activities. However, the relevance of the genotoxic activities to human health is not known yet. This paper gives an overview on genotoxic, anti-genotoxic/chemopreventive, nutritive and antinutritive properties of broccoli, its ingredients and their degradation products. A qualitative comparison of the benefit and risk of broccoli consumption benefit-risk assessment shows that the benefit from intake in modest quantities and in processed form outweighs potential risks. For other preparations (fortified broccoli-based dietary supplements, diets with extraordinary high daily intake, consumption as a raw vegetable) further studies both for potential risks and beneficial effects are needed in order to assess the benefit and risk in the future.

    Topics: Animals; Antineoplastic Agents; Ascorbic Acid; Brassica; DNA Damage; Glucosinolates; Glycoside Hydrolases; Humans; Indoles; Isothiocyanates; Models, Animal; Neoplasms; Plant Extracts; Risk Assessment; Sulfoxides; Thiocyanates; Vegetables

2011
Ascorbigen and other indole-derived compounds from Brassica vegetables and their analogs as anticarcinogenic and immunomodulating agents.
    Pharmacology & therapeutics, 1993, Volume: 60, Issue:2

    Searches for the natural compounds that determine the anticarcinogenic properties of a cruciferous-vegetable diet, revealed the products of alkaloid glucobrassicin biotransformations; among these, ascorbigen, an indole-containing derivative of L-ascorbic acid, was found to be the most abundant. Study of chemical properties of ascorbigen showed that it is capable of different transformations in acidic (including gastric juice) and slightly alkaline (including blood) media. The stable and unstable products of ascorbigen transformation determine the biological properties of the compound. The most important product of ascorbigen transformation in gastric juice is 5,11-dihydroindolo[3,2-b]-carbazole, with a binding affinity to the Ah receptor only 3.7 x 10(-2) lower than that of tetrachlorodibenzodioxin. This compound may be responsible for modifying P450 enzyme activities. Ascorbigen and its analogs are available synthetically. Their biological evaluation showed that some of the compounds of these series are immunomodulators. The most active is N-methylascorbigen, which demonstrates therapeutic effects (inhibition of tumor growth, protection of animals from bacterial and viral infections). The immunomodulatory activity of natural ascorbigen may be an additional factor of importance for the anticarcinogenic properties of a cruciferous-vegetable diet.

    Topics: Adjuvants, Immunologic; Animals; Anticarcinogenic Agents; Ascorbic Acid; Biotransformation; Brassica; Glucosinolates; Humans; Hydrogen-Ion Concentration; Indoles; Molecular Sequence Data; Neoplasms, Experimental

1993

Other Studies

6 other study(ies) available for ascorbic-acid and glucobrassicin

ArticleYear
Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage.
    Food chemistry, 2016, Jul-15, Volume: 203

    The aim of the study was to investigate the effect of storage on the contents of glucosinolates (GLS) and their degradation products in a boiled white cabbage. A 24h storage at 4 °C resulted in a decrease in GLS content (20-40%, depending on the cooking time applied) in the edible parts. The most significant losses were observed for sinigrin (20-45%), and the least for glucobrassicin (12-32%). Storage had a diversified effect on GLS breakdown products (indole-3-acetonitrile, indole-3-carbinol, ascorbigen and 3,3'-diindolylmethane released from glucobrassicin and 4-methylsulfinylbutanenitrile released from glucoiberin) in the boiled cabbage. The increase in the content of indole-3-acetonitrile, especially considerable within the first 24h of storage (and a simultaneous decrease in glucobrassicin) clearly indicates that degradation of GLS may occur during storage or cooling to 4 °C.

    Topics: Ascorbic Acid; Brassica; Drug Stability; Fermentation; Food Handling; Food Preservation; Glucosinolates; Hot Temperature; Indoles

2016
Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.).
    Food chemistry, 2014, Feb-15, Volume: 145

    We profiled and quantified glucosinolates (GSLs), anthocyanins, free amino acids, and vitamin C metabolites in forty-five lines of green and red cabbages. Analysis of these distinct cabbages revealed the presence of 11 GSLs, 13 anthocyanins, 22 free amino acids, and vitamin C. GSL contents were varied amongst the different lines of cabbage. The total GSL content was mean 10.6 μmol/g DW, and sinigrin was the predominant GSL accounted mean 4.0 μmol/g DW (37.7% of the total) followed by glucoraphanin (1.9) and glucobrassicin (2.4). Amongst the 13 anthocyanins, cyanidin 3-(sinapoyl) diglucoside-5-glucoside levels were the highest. The amounts of total free amino acids in green cabbage lines ranged 365.9 mg/100g fresh weight (FW) to 1089.1mg/100g FW. Vitamin C levels were much higher in red cabbage line (129.9 mg/100g FW). Thus, the amounts of GSLs, anthocyanins, free amino acids, and vitamin C varied widely, and the variations in these compounds between the lines of cabbage were significant.

    Topics: Amino Acids; Anthocyanins; Ascorbic Acid; Brassica; Food Analysis; GABA Agents; Glucosinolates; Imidoesters; Indoles; Oximes; Sulfoxides; Vitamins

2014
Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.
    Journal of agricultural and food chemistry, 2012, Apr-11, Volume: 60, Issue:14

    The aim of the study was to investigate the effect of the pasteurization process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Pasteurization was run at a temperature of 80 °C for 5-30 min. Significant changes were only observed in contents of ascorbigen and 3,3'-diindolylmethane. The total content of the compounds analyzed in cabbage pasteurized for 10-30 min was found to be decreased by ca. 20%, and the losses were due to thermal degradation of the predominating ascorbigen. Pasteurization was found not to exert any considerable effect on contents of indole-3-acetonitrile and indole-3-carbinol in cabbage nor did it affect contents of the compounds analyzed in juice.

    Topics: Ascorbic Acid; Brassica; Fermentation; Glucosinolates; Hot Temperature; Indoles; Pasteurization

2012
Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period.
    Journal of agricultural and food chemistry, 2003, May-07, Volume: 51, Issue:10

    Total aliphatic and indole glucosinolates, phenolic compounds (flavonoids and hydroxycinnamoyl derivatives), and vitamin C contents were evaluated in freshly harvested broccoli (Brassica oleracea L., var. italica, cv. Marathon) inflorescences. These were film-wrapped and stored for 7 days at 1 degrees C to simulate a maximum period of commercial transport and distribution. After cold storage, inflorescences were kept for 3 days at 15 degrees C to simulate a retail sale period. For wrapping, low-density polyethylene (LDPE) of 11 microm thickness was used. Gas composition was about 17% O(2) and 2% CO(2) during cold storage and about 16% O(2) and 3-4% CO(2) during shelf life within packages. The predominant glucosinolates were 4-methylsulfinylbutyl-glucosinolate (glucoraphanin), 3-indolylmethyl-glucosinolate (glucobrassicin), and 1-methoxy-3-indolylmethyl-glucosinolate (neoglucobrassicin). The predominant hydroxycinnamoyl derivatives were identified as 1,2,2'-trisinapoylgentiobiose, 1,2-diferuloylgentiobiose, 1,2'-disinapoyl-2-feruloylgentiobiose, and 3-O-caffeoyl-quinic (neochlorogenic acid). Results showed major losses at the end of both periods, in comparison with broccoli at harvest. Thus, the respective losses, at the end of cold storage and retail periods, were 71-80% of total glucosinolates, 62-59% of total flavonoids, 51-44% of sinapic acid derivatives, and 73-74% caffeoyl-quinic acid derivatives. Slight differences in all compound concentrations between storage and retail sale periods were detected. Distribution and retail periods had minimal effects on vitamin C. Weight loss was monitored at the end of both periods.

    Topics: Ascorbic Acid; Brassica; Carbon Dioxide; Cold Temperature; Coumaric Acids; Flavonoids; Food Packaging; Food Preservation; Glucose; Glucosinolates; Health Promotion; Imidoesters; Indoles; Oximes; Oxygen; Phenols; Plant Structures; Sulfoxides; Time Factors; Transportation

2003
Supercritical fluid chromatography as basis for identification and quantitative determination of indol-3-ylmethyl oligomers and ascorbigens.
    Journal of biochemical and biophysical methods, 2000, Jul-05, Volume: 43, Issue:1-3

    Indol-3-ylmethylglucosinolate (glucobrassicin) occurs in most plants of the Brassicaceae family together with hydroxy and methoxy derivatives of glucobrassicin. These compounds and products produced therefrom have been the subject of considerable research interest due to their potential anticarcinogenic effects, and thereby a need for techniques to work with the individual compounds. A method using normal-phase supercritical fluid chromatography (SFC) with methanol as modifier has been developed for determination and quantification of the various indol-3-ylmethyl derivatives including ascorbigens formed from the glucobrassicin degradation product, indol-3-ylmethanol, under acidic conditions (pH 2-6) with and without the presence of ascorbic acid. The SFC method had detection limits in the 10-100-pmol range. In the absence of ascorbic acid a range of oligomers were formed, whereas the presence of ascorbic acid favoured the formation of ascorbigen and products thereof. Quantitatively important indol-3-ylmethyl oligomers consisting of up to five indol rings have been purified with preparative SFC and identified from MS and 1D and 2D NMR experiments with complete assignment of chemical shifts to all of the atoms. Investigation of the autolysis products of white cabbage showed that ascorbigens were the quantitatively dominating degradation products of indol-3-ylmethylglucosinolates.

    Topics: Ascorbic Acid; Brassica; Chromatography; Glucosinolates; Hydrogen-Ion Concentration; Indoles; Linear Models; Magnetic Resonance Spectroscopy; Mass Spectrometry; Models, Chemical; Plant Extracts; Time Factors

2000
Biogenesis of glucobrassicin, the in vitro precursor of ascorbigen.
    Nature, 1962, Apr-28, Volume: 194

    Topics: Ascorbic Acid; Carbohydrate Metabolism; Glucosinolates; Glycoside Hydrolases; Humans; In Vitro Techniques; Indoles

1962